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Abstract Efficiency analysis is commonly used to assess and
compare the productivity of similar decision-making units
(DMUs). In this research, we broaden the applicability of
efficiency analysis to situations where each DMU comprises
interconnected sub-DMUs (e.g., departments). Extant research
espouses that embracing the connectedness between sub-
DMUs (e.g., marketing–sales interface, marketing–R&D inter-
face) helps maximize sub-DMU and DMU performance. For
example, the marketing sub-DMU generates sales leads
through advertising while the sales force sub-DMU convert
leads into sales. The sales force sub-DMU partially relies on
the marketing sub-DMU to generate sales, and the DMU ben-
efits from the efficiency gained by the sales force sub-DMU in
following through the leads generated by the marketing sub-
DMU. To conduct efficiency analysis of DMUs with intercon-
nected sub-DMUs, we need a method that produces sub-DMU
level efficiency scores, accounts for the interconnectedness
among sub-DMU inputs and outputs, and provides statistical
inference on the impact of efficiency on overall DMU outputs;
all of which is not provided by extant methods. Accordingly,
we propose a new method that combines the intuition of the
existing methods to address the problem. In addition, based on
syndicated data from over 300 newspapers with interconnected

sub-DMU, we present empirical evidence that the proposed
method outperforms traditional approaches that do not consider
sub-DMU interconnectedness. Finally, the proposed method
yields substantive insights. For example, the newsroom depart-
ment was the most efficient; yet newsrooms appear to have
been the major focus of cutbacks during the last decade.

Keywords Efficiency analysis .Marketing interfaces . Data
envelopment analysis . Stochastic frontier analysis . Sliced
inverse regression

1 Introduction

Efficiency analysis has been a core issue of marketing since
the discipline’s origins [e.g., 2, 35, 36]. In general, efficiency
analysis assesses the relative productivity of comparable
decision-making units (DMUs), e.g., competing firms in a
market, stores of a retailer, geographic branches of a sales
organization, etc. According to such analyses, a 100 % effi-
cient DMU is one that produces the most output(s) given the
same input(s) as other DMUs or, equivalently, uses the least
input(s) to produce the same level of output(s) as other DMUs
being compared. To understand how to better convert scarce
marketing resources into improved performance outcomes,
marketing scholars have conducted both internal and external
efficiency benchmarking analyses in a variety of contexts,
e.g., assessing relative efficiencies of stores in a retail chain
[17], sales districts of a sales organization [20], and large
banks in the banking industry [25].1

1 Benchmarking is a widely adopted management tool by which a firm
seeks to identify and replicate best practices to enhance its business
performance [4, 31, 46]. External benchmarking compares the perfor-
mance of one organization with others like itself in the same industry or
across industries, while internal benchmarking compares similar opera-
tions (individuals, departments, branches) within an organization.
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However, to date, efficiency analyses in marketing have
ignored the fact that in many contexts, the DMUs in question
are comprised of “sub-DMUs,” e.g., organizational depart-
ments, that are linked in that some or all of the outputs of
one department’s productive activity may serve as inputs for
the other’s activity. For example, customer leads generated by
the marketing department of an organization are critical inputs
for the sales department’s activity of converting prospects into
customers, while orders booked by sales are critical inputs for
production and so on. Moreover, in many instances, organi-
zational departments are interlinked in that some or all of the
outputs of one department serve as the inputs for the other and
vice versa. For example, revenues from the customer orders
successfully booked by sales may drive marketing efforts that
yield leads utilized by sales to produce orders. Intuitively, the
overall efficiency of a DMU is an aggregation of the efficiency
of each sub-DMU or department after accounting for the
portion of its inputs (outputs) supplied (utilized) by other
sub-DMUs with which it interfaces.2 Marketing scholars ar-
gue that organizational performance is impacted by coordina-
tion (or lack thereof) at various marketing-related interfaces
such as the marketing–sales interface [e.g., 22, 33], market-
ing–production interface [e.g., 12, 13, 19], and marketing–
R&D–sales interfaces [e.g., 11, 14, 18]. However, so far, no
study has performed overall marketing efficiency
benchmarking of DMUs of interest accounting for the respec-
tive efficiencies of interfacing sub-DMUs or departments of
which they are comprised. Such an analysis promises to
provide deeper insight into specific sub-DMU interfaces that
need greater attention in order to boost overall DMU produc-
tivity. Our research in this paper aims to fill this gap in the
extant organization-level marketing efficiency analysis
literature.

More formally, we identify three criteria that must be met
by a method for assessing relative efficiencies of a set of
DMUs that accounts for sub-DMU level efficiencies:

1. Produce efficiency scores at the sub-DMU level: When
relative efficiencies of a set of DMUs are expressed in terms
of sub-DMU level relative efficiency scores, the sub-DMU/s
that contribute more or less to overall efficiency can be iden-
tified. This analysis is likely to be of more diagnostic value
than the typical aggregate analysis for managers considering
where and how to intervene to boost overall productivity of a
DMU.
2. Model interconnectedness among sub-DMU when produc-
ing efficiency scores: Modeling the interconnectedness among
sub-DMUs will help produce efficiency scores that explicitly
adjust for the portion of an sub-DMU’s inputs (outputs) sup-
plied (utilized) by other sub-DMUs with which it interfaces

and also correct for any upward/downward bias that might
arise when the interfaces between sub-DMUs are ignored.
3. Provide statistical inference about the impact of sub-DMU
efficiency: When sub-DMUs within a DMU are interconnect-
ed, the increase in each sub-DMU’s efficiency should contrib-
ute not only to its own outputs but also to the outputs of all
other sub-DMUs with which it interfaces. It is meaningful to
provide metrics that document the impact of an increase in
sub-DMU efficiency to sub-DMU and overall DMU output.
Since numerous random factors (e.g., luck, weather) could
alter the impact of each sub-DMU’s efficiency on overall
DMU efficiency, it is useful to provide an uncertainty range
around the impact metric. Thus, we should control for the role
of random error and need a means to estimate (rather than
simply calculate) and statistically test (rather than assume) the
impact of an increase in sub-DMU efficiency on the each
DMU output.

A review of the literature on efficiency analysis techniques,
e.g., data envelopment analysis (DEA) [8] and stochastic
frontier analysis [1], reveals that no available method meets
all three criteria noted above. More specifically, the DEA
approach, developed in operations research [8], is a nonpara-
metric way to relate output(s) to input(s) without assuming
any restrictive form for the production function [e.g., 44, 45].
Network DEA (NDEA), developed in [15], conceptualizes a
DMU as a set of smaller interconnected sub-DMUs
(departments) and calculates the efficiency scores for the
DMU and each sub-DMU. However, neither DEA nor NDEA
provides statistical inference on the impact of efficiency. In
contrast, the stochastic frontier analysis (SFA) approach, de-
veloped in economics [1], parametrically estimates the rela-
tionship between an output and various inputs, providing
formal statistical inference about the impact of increase in
efficiency on outputs [42]. However, SFA does not model
the interconnectedness among sub-DMUs.

In this paper, our goal is to develop and demonstrate a
suitable approach to benchmarking of DMUs that meet all the
three criteria simultaneously. This new two-stage approach
not only employs advanced forms of both DEA and SFA that
preserves their basic advantages (discussed in the next sec-
tion) but also permits efficiency analysis of DMUs with inter-
connected sub-DMUs. This approach combines NDEA with
multivariate sliced inverse regression (MSIR) [24]. While
NDEA allows us to effectively characterize the interfaces
among various sub-DMUs, MSIR provides nonparametric
statistical inference about the impact of increase in sub-
DMU efficiency on each DMU level output of interest.

We demonstrate the benefits of the proposed approach in a
practical context, currently of great interest to marketers and
media economists. Specifically, our empirical application in-
volves external benchmarking of print newspaper firms,
where output–input links between key sub-DMUs (newsroom

2 An interface represents the point of interconnection between two orga-
nizational subsystems, e.g., departments.
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or editorial, distribution, and advertising space sales depart-
ments) exist. Facing tough economic times in the USA today,
newspaper firms are struggling to improve their efficiency and
profitability [6]. They would benefit from a benchmarking
methodology that identifies those firms that are most efficient
as well as reveals the relative efficiencies of individual sub-
DMUs taking into account their direct and indirect impacts on
outputs of interest to the firms. For example, the advertising
sales outputs of the sales department are of value in them-
selves and also an input impacting a newspaper’s circulation,
the main output of the newsroom department.

Using syndicated data from over 300 newspapers, we first
obtain the efficiencies of the newsroom, distribution, and sales
force sub-DMUs for each newspaper and then assess the
impact of efficiency on the performance of newspapers. We
also replicate the analyses using another sample of over 200
newspapers. We find that the proposed method outperforms
the current aggregate approach and offers substantive guid-
ance to the newspaper industry. For example, the newsroom
department is the most efficient, yet newsroom efficiency does
not statistically increase the outputs of newspapers; whereas
the efficiencies of sales force and distribution departments
increase both the subscriptions and ad-space revenues.

The rest of the paper is organized as follows. Section 2
reviews the available procedures for efficiency and their lim-
itations with respect to modeling sub-DMUs and their inter-
faces. Section 3 develops the proposed method, Section 4
presents the empirical analysis, and Section 5 concludes by
summarizing the key takeaways.

2 Review of Existing Efficiency Analysis Techniques

In this section, we describe the commonly used approaches for
efficiency analysis and highlight their limitations when ana-
lyzing the efficiency of interconnected sub-DMUs in conjunc-
tion with the overall efficiency of a DMU. We then develop a
suitable approach that meets three desired criteria.

2.1 Data Envelopment Analysis

Consider the comparison of nDMUs that each usem inputs x0
to produce s outputs y0. DEA uses the data (x0, y0) to calculate
the scalar efficiency of a DMU as a weighted ratio of the
DMU’s outputs to the DMU’s inputs. DEA calculates the
DMU’s weighting scheme and scalar efficiency simultaneous-
ly [8]. Specifically, DEA sets up a linear program to optimally
determine the weights that enable each DMU to maximize its
weighted ratio of outputs to inputs (efficiency) subject to all
DMUs’ efficiencies. Thus, DEA calculates every DMU’s
weights at the point where the DMU is most efficient. Appen-
dix 1 presents the details of calculating the efficiency scores.
A DMU is 100 % efficient if its score is unity.

Column 2 in Table 1 below evaluates the use of DEA for
efficiency analysis of DMUs with interconnected sub-DMUs.
To apply DEA to our setting, we could simply combine all the
outputs that come out of a DMU and all the inputs that go into
it, regardless of which sub-DMU they belong to, and then
obtain the DMU’s efficiency score with respect to the conver-
sion of all inputs to outputs. However, this would treat a DMU
as a “black box,” and the sub-DMUs and their interfaces
would not be modeled. Conversely, one could perform as
many DEA analyses as there are sub-DMUs by treating each
sub-DMU as an entire DMU that uses inputs to produce
outputs. While this would overcome the challenge of provid-
ing sub-DMU level scores, it would ignore the interfaces
shared by the sub-DMUs. Finally, since DEA is purely deter-
ministic, it cannot provide statistical inference about the im-
pact of efficiency [26]. Therefore, it is not a comprehensive
tool for our purpose (see Table 1).

2.2 Stochastic Frontier Analysis

SFA explicitly accounts for the role of random errors in
computing efficiency (e.g., [1]). Consider the comparison of
n DMUs using m inputs in vector x0 to produce the scalar
output y0. SFA assumes that a DMU uses a production tech-
nology f(x0, β) to produce y0, where β represents the slope
coefficient vector corresponding to x0.

SFA challenges the assumption that DMUs actually pro-
duce as much as their technology function would imply.
Specifically, while each of the n DMUs may try to produce
outputs according to its technology, they may fall short by an
amount vk (k=1…,n) due to inefficiency. Efficiency in SFA is
the ratio of observed output produced by a DMU to the
maximum feasible output producible by the DMU. Addition-
ally, the SFA incorporates error (u) in our knowledge of a
DMU’s production function to account for myriad random
factors not explicitly included in the model. In sum, we
represent a DMU’s output as:

y0 ¼ f x0;βð Þexp εSFAð Þ ð1Þ

where εSFA is the difference of the normal error term (u) and
the one-sided error term (v>0). Thus,

y0 ¼ f x0;βð Þexp u−vð Þ ð2Þ

Column 3 in Table 1 evaluates the use of SFA for efficiency
analysis of DMUs with interconnected sub-DMUs. Similar to
DEA, one could again perform as many SFA analyses as there
are sub-DMUs by treating each sub-DMU as an entire DMU
that obtains inputs to produce outputs. This would provide
sub-DMU efficiency scores but ignore the interfaces shared by
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the sub-DMUs. However, maximum likelihood estimation
provides the estimates and inference of β and the DMU-
specific estimates of inefficiency (vk). However, we require
pre-specification of a functional form f(⋅). In light of these
limitations, SFA also falls short of meeting the first two of our
three desired criteria.

2.3 NDEA

NDEA falls in the class of DEA models in that it also uses the
mathematical programming idea to calculate the weights and
efficiency of a DMU. The basic innovation of NDEA, devel-
oped in [15], is that it breaks a DMU into a set of smaller
interconnected sub-DMUs (departments) and calculates the
overall efficiency score of a DMU as well as each sub-
DMU’s efficiency score. While doing so, it also recognizes
that sub-DMUs may be structured so that one DMU’s output
may serve as another’s input. Performing benchmarking
through NDEA involves the specification of the interfaces
within a DMU and then the solution of a linear program
similar to that of standard DEA. Appendix 2 provides the
details for calculating the weights and efficiency scores via
mathematical programming (see [15]).

Column 3 in Table 1 evaluates the use of NDEA for
efficiency analysis of DMUs with interconnected sub-
DMUs. We would identify the inputs, outputs, and the inter-
faces across sub-DMUs. By obtaining sub-DMU and DMU
scores while accounting for interconnectedness due to the sub-
DMU interfaces, NDEA addresses the first two issues in
Table 1. However, NDEA is purely deterministic and does
not provide statistical inference about the impact of increasing
a sub-DMU’s efficiency on all DMU outputs. Therefore,
NDEA also falls short of all three criteria.

2.4 Two-Stage (DEA + Regression) Approach

Arnold et al. [3] introduce a two-stage efficiency ap-
proach to combine the nonparametric advantages of
DEA and the inference capabilities of SFA. They pro-
pose the joint use of DEA and ordinary least squares
(OLS), i.e., they include the results from a DEA analysis
in the linear regression of outputs on inputs.

Specifically, for a set of n DMUs, they perform a
standard DEA (stage 1) to obtain the efficiency score
of each DMU. Their second stage consists of two parts
in the case of a DMU producing multiple outputs. In part
1, they condense multiple outputs into one composite
output via canonical correlation of outputs on inputs.
Specifically, if a DMU produces s outputs each denoted
by ys, then they define composite output CY by

CY ¼
X

j¼1

s
γ jlny j; ð3Þ

where γj represents the canonical coefficients obtained be-
tween the outputs and inputs (see, e.g., [40]). In part 2, they
regress the composite output CY on the multiple inputs and
efficiency score of the DMU. Denoting the efficiency score by
ρ, their approach assumes the Cobb-Douglas (double log)
functional form as follows:

lnCY ¼ τ0 þ ex00τ1 þ τ eρþ εCY; ð4Þ

where ex0 is an m×1 vector that equals lnx0 , τ1
represents the m×1 slope coefficient vector correspond-
ing to x0 , and τe captures the impact of efficiency on
the composite output CY.

Column 5 in Table 3 evaluates the use of the two-stage
(DEA + Regression) technique for efficiency analysis of
DMUswith interconnected sub-DMUs. The first step involves
DEA and hence cannot take into account the relatedness
among the various sub-DMU interfaces. The two-stage ap-
proach allows for statistical inference since it calculates ρ from
a nonparametric DEA and carries out inference about τe via
OLS. In a simulation study, Bardhan et al. [5] show that
this two-stage method performs better in terms of re-
trieving the true parameters of known (simulated) pro-
duction functions than DEA and SFA taken individually.
However, the Arnold et al. [3] method uses DEA and
suffers from the limitations that sub-DMU efficiency
scores and their interconnectedness are not modeled.

Table 1 Comparison of efficien-
cy analysis techniques Methodological criteria DEA SFA NDEA Two-stage (DEA +

Regression)

Efficiency scores at the
sub-DMU level

Yes, but not
with interfaces

Yes, but not
with interfaces

Yes Yes, but not
with interfaces

Allow sub-DMU inputs and
inputs to be mutually inter-linked

No No Yes No

Statistical inference about the
impact of efficiency

No Cobb-Douglas
functional form

No Cobb-Douglas
functional form
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3 Method Development

As the previous section shows, extant methods do not
simultaneously satisfy all the three methodological
criteria needed for efficiency analysis of DMUs with
interconnected sub-DMUs (see Table 1). Therefore, in
this section, we propose a novel dimension reduction
technique introduced in the statistics literature (multivar-
iate sliced inverse regression) which, when combined
with NDEA, provides the solution that we are seeking.
Similar to Arnold et al. [3], the proposed method em-
ploys a two-stage approach that combines the usefulness
of DEA-based techniques and statistical techniques but at
each stage employs an augmented procedure that pre-
serves their respective advantages throughout the
analysis.

3.1 Modeling the Interconnectedness Among Sub-DMUs

The first stage of the Arnold et al. method to compute effi-
ciency ignores the interconnectedness among sub-DMUs
within a DMU. To embed these interfaces, we use NDEA to
calculate efficiency scores for both the DMU and sub-DMUs.
That is, we allow for some sub-DMUs’ output to serve as
other sub-DMUs’ input.

3.2 Incorporating the Nonparametric Structure

To avoid pre-specifying a functional form such as Cobb-
Douglas in the second stage of Arnold et al., we apply link-
free regression via sliced inverse regression [10]. The general
representation of a SIR model is as follows:

Y ¼ g Xα1;Xα2;⋯;Xαrð Þ; ð5Þ

where Y is a univariate vector of n observations n×1, g(.) is
an unknown function, X is an n×m matrix of m inputs, αj

(j=1,…,r) are m×1 vectors of coefficients (r<m), and ε is
the error term that needs not be normally distributed (i.e., it
belongs to a broad class of elliptically contoured distribu-
tions). Although a generalized eigenvalue decomposition
yields all the r alpha vectors (see [23]), for our purpose, we
extract only the principal eigenvector to estimate the model
y=g(Xα1,εSIR) without pre-specifying the link function
g(⋅). Appendix 3 provides the details of estimation and
inference of the vector α1.

To accommodate multiple outputs, we apply MSIR, where
Y is a matrix of n observations on s outputs. We create a
composite dependent variableYθ1, where θ1 is the s×1 vector
of weights in the model:

Yθ1 ¼ g Xα1; εMSIRð Þ: ð6Þ

Appendix 3 describes how to estimate (θ1,α1) via the
inverse regression theory (see [9, 23]) without pre-specifying
the link function g(⋅). We denote the resulting composite

vectors as COMPY ¼ Ybθ1 and COMPX ¼ Xbα1 .
MSIR generalizes the second stage of Arnold et al. as

follows. First, we estimate the COMPX and COMPY without
pre-specifying the functional form g(⋅). The canonical corre-
lation in part 1 of the Arnold et al. approach is a special case of
MSIR. Specifically, the canonical correlation assumes the link
function g(⋅) to be linear, whereas MSIR does not impose the
linear restriction. Second, once we extract COMPX and
COMPY, we could either create a scatter plot to visually assess
the shape of the link function g(⋅) (e.g., [16]) or choose an
appropriate function, Cobb-Douglas or other, post hoc. In
contrast, in part 2 of the Arnold et al. approach, the link
function g(⋅) is pre-specified to be of the log–log type. In
contrast, MSIR discovers the shape nonparametrically, which
could be used to post-specify the relevant parametric link
function.

3.3 Algorithm for the Proposed Method

Stage 1 Sub-DMU Efficiency Computation

& Identify the sub-DMUs, inputs, outputs, and linked
inputs of each sub-DMU of the DMU. Compute the
efficiency scores of each sub-DMU. Appendix 2 pro-
vides the computational details.

Stage 2 Nonparametric Estimation and Inference

Part 1 Perform an MSIR estimation where Y includes all
the outputs produced by the DMU and X includes all the
inputs used by the DMU and the efficiency scores of each
sub-DMU. Extract the composites, COMPY and COMPX,
without pre-specifying the link function g(⋅). Appendix 2
provides the estimation and inference details.
Part 2 Plot a graph of the extracted composites, COMPY
versus COMPX, to determine an appropriate functional
form COMPY=g(COMPX). Test whether a sub-DMU’s
efficiency significantly increases the outputs.

We next apply this algorithm to US print newspaper firms.
We first describe the data set and the interfaces among the sub-
DMUswithin a newspaper firm and then discuss the empirical
results and substantive insights.

4 Empirical Application

We focus on the newspaper industry for our empirical appli-
cation for the following reasons. First, the newspaper industry
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is characterized by the presence of a few large companies that
have each acquired several hundred independently operating
DMUs [30]. For example, the leading media giant Gannett
Incorporated owns 82 daily newspapers that function as in-
dependent DMUs3. Efficiency analysis could provide timely
and accurate guidance to DMUs performing below the mark.
Second, recent years have seen a wave of debatable consoli-
dation and deconsolidation decisions by media firms. For
example, Clear Communication Inc. grew to dominate the
US radio market by acquiring DMUs from nearly 70 compa-
nies. Such acquisitions led to criticism since analysts did not
consider all DMUs as strategic assets. Efficiency analysis
helps during acquisition situations when consolidating firms
seek to replace/discard some poorly performing DMUs [34].
Third, daily newspaper sorely needs guidance on efficient
allocation of resources given they are going through tough
economic times due to dwindling circulations (e.g., [6]). After
several interviews with newspaper owners and managers of
syndicated data collection agencies, we find that no formal
efficiency analysis has been performed to benefit the industry
at large. Moreover, no academic application exists on
benchmarking to gauge the productivity of media firms.
Hence, we acquired data from a syndicated press association
to perform efficiency analysis, which we next describe.

4.1 Data

The Inland Press Association (IPA) provided the data. The
IPA venture began as a service to small and medium newspa-
pers (with daily circulation of less than 85,000) that would
otherwise lack reference to the industry norms. Since 1916,
IPA kept annual records of data on financial aspects of hun-
dreds of US print newspapers. The IPA database includes data
on costs incurred by various departments of a newspaper
(number of employees, expenses on equipment), revenues
obtained, and profits generated. For our analysis, we obtained
data from 310 newspapers in 1999. We also perform a repli-
cation analysis with data on 225 newspapers from 2002. To
protect newspaper confidentiality, the IPA does not reveal
information about newspapers’ identities and locations;
hence, we treat the dataset from 1999 and 2002 as a separate
cross-sectional sample.

Each newspaper is a stand-alone DMU comprised of three
main sub-DMUs: the newsroom for creating news content, the
distribution department for circulation, and the sales force for
selling advertising space. The inputs utilized by each of these
sub-DMUs are employees and equipment. Their outputs are
measured by the pages of news content produced (in inches),
the number of subscriptions sold, the amount of ad space sold

(in inches), and the amount of local, national, and classified
advertising revenue.

Table 2 presents the descriptive statistics of the outputs and
inputs for 1999 and 2002. The newsroom is the most highly
staffed sub-DMUwith 40% of all the employees, whereas the
distribution sub-DMU contributes the most to equipment
expenses.

4.2 Sub-DMU Efficiency Computation

4.2.1 Interfaces of the Newspaper Organizational Structure

Newsroom The role of the employees in the newsroom is to
produce andmarket a product of high quality and integrity that
positively impacts circulation [27]. Specifically, the em-
ployees and equipment in the newsroom (inputs) combine to
generate news content and subscribers (outputs). Local news-
papers’ own staff writes most of their news; external wire
services contribute much less. As shown in past research
(e.g., [38]), the type (retail, national, classified) and amount
of ad space also impact newsroom outputs. Therefore, we treat
outputs of the sales force department as linked inputs to the
newsroom department.

Distribution Its responsibility is to effectively deliver the
newspaper to subscribers. A newspaper’s delivery systems
are strategic assets [28]. A newspaper’s distribution elasticity
is large (0.23) and significant [27], suggesting that a 10 %
increase in distribution intensity results in 2.3 % increase in
sales. Because the delivery of a print newspaper on time and in
good condition retains subscribers’ interest in the service, the
main output of the distribution department is also the number
of subscribers.

Sales Force Its role is to sell ad space to advertisers. The total
space sold and the revenues from retail, national, and classi-
fied ads are the outputs of sales force efforts [43]. Over 85 %
of ads in newspapers promote a product or service; the re-
maining ads promote events such as public meetings and
personal messages [29]. The output produced by the news-
room (pages of content, subscriptions) and distribution depart-
ments (subscriptions) influence advertisers in buying ad space
in a newspaper [37]. Therefore, we treat the outputs from the
newsroom and distribution departments as being linked inputs
to the sales force [32].

Figure 1 summarizes the newspaper organizational struc-
ture. The gray boxes show the newsroom, distribution, and
sales force sub-DMUs. These input boxes point towards the
departments with block arrows. We depict subscriptions and
pages of content (newsroom output) to the right of the news-
room department box, with block arrows pointing from the
newsroom towards the outputs. The distribution department is
also responsible for producing subscriptions, and hence, a

3 Sourced from the company website [http://www.gannett.com/about/
company_profile.htm]
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block arrow points from the distribution department towards
subscriptions. We show ad space and ad revenue (sales force
output) to the right of the sales force department box, with
block arrows pointing from the sales force department towards
the outputs.

Turning to the linked inputs, since ad revenue and ad space
(sales force outputs) serve as inputs to the newsroom, we draw
a dashed arrow pointing from ad space and ad revenue to the
newsroom department. Similarly, since the sales force uses
subscriptions and content pages as linked inputs from the
newsroom, we draw a dashed arrow pointing from subscrip-
tions and pages of content to the sales force department. This
description shows us how the newsroom, distribution, and
sales force sub-DMUs are intricately linked.

4.2.2 Empirical Results

As in Tone and Tsutsui [41], we apply linear programming to
obtain the efficiency scores and compare them to those from
the traditional DEA model. Table 3 provides the mean effi-
ciency scores of the newspapers in 1999 and 2002. The
standard DEA-based mean overall efficiency is 0.77 for
1999 and 0.86 for 2002. In contrast, the proposed method
which captures the interconnectedness estimates the mean
overall efficiency as 0.53 for 1999 and 0.62 for 2002. The
smaller score reflects the more conservative nature of the
proposed method as it identifies more linked variables to
penalize DMUs for their inefficiency.

Furthermore, the proposed method provides the sub-DMU
efficiencies as well as the overall DMU efficiency for each

firm. This information is unavailable from the standard DEA
analysis. In Table 3 below, we see that the newsroom’s effi-
ciency is higher than the efficiency of the distribution and
advertising sales departments in 1999 and 2002. This finding
is interesting because newsrooms have been the major focus
of cutbacks during 2002–2010 [39] even when they seem to
operate at high efficiency relative to other departments.

Table 4 further reveals the benefits of the proposed method
relative to the standard DEA. Specifically, we identify and
discriminate a few outstanding performers from the rest. Ta-
ble 4 shows that, in 1999 and 2002, respectively, the standard
DEA performs poorly because it classifies 197 firms (about
63 %) and 163 firms (about 72 %) as being 100 % efficient.
Such a prevalence of high-performing firms is hard to recon-
cile given the downturn soon thereafter [27]. On the other
hand, the proposed method identifies only 30 (22) firms in
1999 (2002) as fully efficient, which suggests an average of
10 % or fewer outstanding firms in the sample. Indeed, this
ability of the proposed method to identify a selective sample
of outstanding firms empowers the managers to learn from the
finest performers rather than from the average performers.

Finally, we expect the DMUs with higher efficiency scores
to earn higher profits. The correlations between efficiency
scores (based on the proposed method) and profits were 0.34
and 0.32 in 1999 and 2002, respectively, and statistically
significant. In contrast, the correlations between the efficiency
scores based on the standard DEA and profits are much lower
(0.19 in 1999, 0.20 in 2002).

To summarize, the proposed method captures the intercon-
nectedness of sub-DMUs and outperforms the standard DEA.

Table 2 Descriptive statistics
Input measures Year 1999 Year 2002

Variable Mean Std. Dev. Mean Std. Dev.

Newsroom, full-time employees 32 22 36 24

Newsroom, part-time employees 3 4 4 11

Newsroom, expenses on equipment 335,854 247,635 383,207 274,002

Sales force, full-time employees 26 21 27 17

Sales force, part-time employees 2 3 2 7

Sales force, expenses on equipment 292,641 334,508 348,541 431,215

Distribution, full-time employees 16 14 18 17

Distribution, part-time employees 8 11 8 14

Distribution, expenses on equipment 742,971 731,874 962,721 1,018,622

Output measures Year 1999 Year 2002

Variable Mean Std. Dev. Mean Std. Dev.

Pages of news content 6,916 2,903 7,715 3,150

Retail ad revenue ($) 4,417,502 6,987,257 4,394,404 3,435,720

National ad revenue ($) 249,378 363,728 360,457 665,971

Classified ad revenue ($) 3,592,898 3,626,875 3,950,905 3,726,696

Pages of ad space 4,993 2,918 5,125 2,716

Number of subscriptions sold 26,417 18,426 28,966 18,979
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It provides discriminating information as well as disaggre-
gated (sub-DMU level) information. It assists less efficient
firms by identifying the finest firms to benchmark and emu-
late. It offers diagnostic information with respect to the effi-
ciency improvements at the departmental (sub-DMUs) levels.
We next demonstrate how MSIR outperforms in the second
stage.

4.3 Nonparametric Estimation and Inference

Stage 2 of the proposed method discovers how the inputs in
each department together with the departmental efficiencies
impact the outputs produced by the firm. In part 1 of stage 2,
we extract the composite variables COMPYand COMPX using
MSIR. Six outputs comprise the dependent variables: pages of
content, pages of ad space, subscriptions, retail, local, and
classified ad revenues. Three inputs comprise the independent
variables: full-time and part-time employees, investments in
equipment in the three sub-DMUs, and the three sub-DMU
efficiency scores. Therefore, the vector of independent vari-
ables has (3×3)+3=12 inputs. Table 5 shows the MSIR
estimates for 1999 and 2002. It shows the estimates of the
α1 vector which reduces the dimensionality of the 12 inputs
and the estimates of the θ1 vector which reduces the dimen-
sionality of the 6 outputs.

In the part 2 of stage 2, we discover the relationship
between COMPY and COMPX and do not impose a functional

form a priori. Rather, we let the data inform us the most
appropriate shape. Because we log-transform the output and
input variables, we expect a linear relationship between
COMPY and COMPX if the Cobb-Douglas assumptions were
to hold. To formally ascertain the presence of nonlinearity, we
estimate a series of nonlinear models given by COMPY=π (-
COMPX)

δ/δ, where δ ranged from 0 to 1 in increments of 0.1.
When δ=1, the relationship between COMPY and COMPX is
linear, thereby nesting the Arnold et al. [5] Cobb-Douglas
form. We compute the corrected Akaike information criterion
(AICC) for each of the models; the best model is one that
attains the smallest AICC [21].

Table 6 presents the results for model selection across the
11 alternative models in 1999 and 2002. Focusing on results
for 1999, the model with δ=0 obtains an AICC value of
1,188.24, while the model with δ=0.6 attains the minimum
AICC score of 1,099.60. The difference in information crite-
rion exceeds the critical threshold of 2 points for rejection [7].
Hence, we reject the model with δ=0 in favor of the model
with δ=0.6. Also, the model with δ=1 (the Arnold et al.
model) obtains an AICC value of 1,590.47, which is more
than 2 points greater than the model with δ=0.6. Hence, we
reject the Arnold et al. model (δ=1) in favor of the model
whose δ=0.6.

Focusing on results for 2002, the model with δ=0 obtains
an AICC value of 671.46, the model with δ=1 obtains an
AICC value of 1,167.67, and the model with δ=0.5 attains

NEWSROOM

SALESFORCE

DISTRIBUTION

Inputs:
Employees
Expenses

Inputs:
Employees
Expenses

Inputs:
Employees
Expenses

Content Pages

Subscriptions

Ad Space
Ad Revenue

Fig. 1 Interconnectedness of the
newspaper organizational
structure

Table 3 DMU and sub-DMU
efficiency Efficiency scores 1999 2002

Method DEA Proposed DEA Proposed

Overall DMU efficiency (mean) 0.770 0.529 0.855 0.625

Newsroom sub-DMU efficiency (mean) 0.758 0.788

Distribution sub-DMU efficiency (mean) 0.548 0.603

Sales force sub-DMU efficiency (mean) 0.484 0.613
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the minimum AICC score of 669.29. The difference in infor-
mation criteria between the models with δ=0 and δ=0.5 and
the difference in information criteria between the models with
δ=1 and exceed 2, respectively. Hence, we again reject the
models with δ=0 and δ=1 over the model with δ=0.5. Thus,
our proposed approach allows flexibility in the choice of
nonlinearity. Table 7 shows the estimates of π for 1999 and
2002.

We calculate the percentage increase in a newspaper output
(e.g., ad space sold) in response to a 1 % change in the
department’s efficiency by combining information from Ta-
ble 4 (links the individual outputs to COMPY and the individ-
ual inputs to COMPX) and Table 5 (links COMPY and

COMPX). Table 8 shows the results for year 1999 (year
2002 results are similar).

Table 8 indicates that increases in sales force efficiency
significantly increase all outputs of the newspaper, with sub-
scriptions, pages of content produced, and classified ads
benefitting the most. To boost sales force efficiency, newspa-
per firms should continue to invest in sales force training and
coaching [43]. Table 8 also shows that the distribution effi-
ciencies generate more outputs. Specifically, it enhances the
subscriptions and sales of classified ads. Indeed, when readers
receive newspapers on time, their utility to stay subscribed
increases which, in turn, boosts advertisers’ inclination to buy
ad space. At the current levels, an incremental increase in
newsroom efficiency does not statistically impact any of the
six outputs that the newspaper produces (i.e., the statistical
impact of a 1 % increase in efficiency in the newsroom on all
outputs is 0). This finding occurs because, first, the operating
levels of newsroom efficiency are 20–30 % higher than the
efficiencies of the distribution and sales force departments,
and diminishing returns set in as the efficiency increases.
Second, newspapers tend to be understaffed in the newsroom,
and the average newsroom in our database is already
performing as efficiently as it can, given its limited staff.

5 Conclusion

Efficiency analysis is an important for managing multi-unit
business operations, since it provides accurate and timely
productivity benchmarks for sub-DMUs within firms and

Table 4 DMUs classified as 100 % efficient

Year The standard DEA The proposed approach Sample size

1999 197 (63.5 %) 30 (9.7 %) 310

2002 163 (72.4 %) 22 (9.8 %) 225

Table 5 MSIR estimation results

bα1 estimates (reducing dimensionality of X)

Inputs 1999
estimates Std. Err. 2002
estimates Std. Err.

Newsroom, full-time
employees

0.227 0.056 0.288 0.054

Newsroom, part-time
employees

0.042 0.034 0.017 0.033

Newsroom, expenses on
equipment

0.23 0.052 0.089 0.051

Distribution, full-time
employees

0.131 0.046 0.14 0.043

Distribution, part-time
employees

0.044 0.025 0.022 0.024

Distribution, expenses on
equipment

0.116 0.034 0.156 0.032

Sales force, full-time
employees

0.196 0.052 0.417 0.051

Sales force, part-time
employees

0.042 0.035 0.078 0.036

Sales force, expenses on
equipment

0.211 0.034 0.146 0.031

Newsroom efficiency 0.097 0.103 −0.027 0.076

Distribution efficiency 0.166 0.049 0.106 0.043

Sales force efficiency 0.206 0.048 0.278 0.045bθ1 estimates (reducing dimensionality of Y)

Outputs 1999 estimates 2002 estimates

Pages of news content 0.373 0.104

Number of subscriptions
sold

0.39 0.362

Retail ad revenue ($) 0.083 0.214

National ad revenue ($) 0.045 0.100

Classified ad revenue ($) 0.305 0.351

Pages of ad space 0.126 0.034

Table 6 Model
comparisons δ AICc (1999) AICc (2002)

0 (log) 1,188.24 671.46

0.1 1,677.26 1,132.64

0.2 1,560.08 1,030.22

0.3 1,425.51 907.57

0.4 1,277.68 769.68

0.5 1,144.89 669.29

0.6 1,099.60 707.56

7 1,180.7 833.06

0.8 1,321.89 966.92

9 1,464.25 1,076.52

1 (linear) 1,590.47 1,167.67

Table 7 Estimate from regression of COMPX on COMPY

Year 1999 (δ=0.6) Year 2002 (δ=0.5)

Coefficient Estimate Std. Err. Estimate Std. Err.

Slope of COMPX (π) 3.854 0.005 5.133 0.007
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DMUs at large. However, the literature so far has largely
ignored the efficiency analysis of DMUs with interconnected
sub-DMUs. It is important to address this gap to identify sub-
DMUs and interfaces that are relatively inefficient and need
more management attention.

Towards this end, we first outline three requirements in the
efficiency analysis of DMUs with interconnected sub-DMUs:
a need to produce sub-DMU efficiency scores, to account for
the interconnected input–output relationships between the
sub-DMUs, and to provide statistical inference on the impact
of efficiency on overall DMU outputs. A detailed review of
four existing techniques (DEA, SFA, NDEA, and a two-stage
DEA/OLS method) shows that each method lacks a compre-
hensive treatment of the problem.

Hence, we propose a new two-stage method that meets all
three criteria. We generalize the existing two-stage method
that uses DEA in the first stage by embedding the sub-DMU
structure in a DMU. Consequently, we obtain sub-DMU level
efficiency and understand the interconnectedness among sub-
DMUs. To provide statistical inference, we generalize the
existing two-stage method by performing nonparametric esti-
mation in the second stage of efficiency analysis. Specifically,
we propose multivariate sliced inverse regression, MSIR,
which provides estimation and inference capability without
requiring the users to pre-specify any link function between
the multiple outputs and multiple inputs. MSIR allows re-
searchers the flexibility to discover the relationship between
DMUs’ outputs and inputs, rather than imposing any a priori
relationship.

Our empirical application illustrates how the proposed
method outperforms DEA as an efficiency analysis tool. The
proposed method is applicable to a wide variety of efficiency
analysis situations; it empowers managers to obtain sub-DMU
level insights, measures reliably the impact of efficiency gains
on outputs, and avoids pre-specifying the functional form
between the outputs and inputs.

We close by offering three takeaways for the newspaper
industry. First, newspaper departments are organized so as to
perform tasks that mainly serve one consumer group (e.g.,
reader). The reality is that a media firm produces a joint
product serving both end user groups. In this unique business

model, one department’s outputs enhance the efficiency of
other departments and any benchmarking analysis must ap-
preciate this key feature. Our methodology embraces this two-
sided feature while providing departmental and overall effi-
ciency scores. Therefore, our approach is suitable to bench-
mark newspapers and similar media platforms and in process
development efforts that follow. Second, we provide the cash-
strapped and bankruptcy-ridden industry with a technique to
perform benchmarking analysis to decide which newspapers
and newspaper departments are most efficient. Third, further
increases in newsroom efficiency do not statistically increase
the outputs of the newspapers while increases in sales force
and distribution efficiencies help newspaper firms. This find-
ing occurs because newsroom efficiency is 20–30 % higher
than the efficiencies of the distribution and sales force depart-
ments, and diminishing returns set in as the efficiency in-
creases. We hope practitioners and researchers find the pro-
posed method and results useful.

Appendices

Appendix 1. Obtaining Efficiency Scores Through DEA

We describe the slacks-based approach of DEA to measure
efficiency score (ρ). It provides a scalar efficiency score
invariant to the units of measurement used for inputs or
outputs. The dataset contains m inputs of n DMUs given by
the n×m matrix X and s outputs of the n DMUs given by the
n×smatrix Y. The input and output vectors of a specific DMU
are given by x0; y0ð Þ , where x0 is an m×1 vector and y0 is an
s×1 vector. A particular DMU’s production possibility set can
be written as follows:

P ¼ x0; y0ð Þ
���x0≥X 0μ; y0≤Y

0μ;μ≥0
n o

: ð7Þ

where μ is a n×1 nonnegative vector. The use of μ makes the
input–output vector of a particular DMU x0; y0ð Þ comparable

Table 8 Impact of efficiency on outputs (year 1999)

Output Distribution efficiency Sales force efficiency

Pages of content produced 0.025* 0.056*

Number of subscriptions sold 0.027* 0.058*

Retail ad revenue generated 0.006* 0.012*

National ad revenue generated 0.003* 0.007*

Classified ad revenue generated 0.021* 0.046*

Pages of ad space sold 0.009* 0.019*

* p<0.05, significance level. We use the delta method to calculate standard errors ([8], p. 202)
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to the inputs and outputs of all DMUs (captured in (X,Y)).
Thus, given a DMU’s input–output vector (x0,y0), any hypo-
thetical input–output value (x0≥X ′μ,y0≤Y ′μ) is producible,
where X ′μ is the least input and Y ′μ is the most output in the
dataset. We rewrite a DMU’s input–output vector x0; y0ð Þ as
follows:

x0 ¼ X 0μþ κ‐ ; ð8Þ

y0 ¼ Y 0μþ κþ: ð9Þ

In Eqs. 8 and 9, κ− denotes the m×1 input excess slack
vector and κ+ represents the s×1 output shortfall vector.
When κ−>0, the DMU is inefficient since it uses more input
(than at least one other DMU in the sample) to achieve a given
output level. When κ+>0, the DMU is inefficient on account
of producing lesser output (than at least one other DMU in the
sample), while using a given input level. A DMU’s scalar
efficiency score (ρ) is given by:

ρ ¼
1−

1

m

Xm

i¼1
κ−
i =xi0

� �
1−

1

s

Xs

j¼1
κþ
i =y j0

� �: ð10Þ

We calculate DEA efficiency scores by finding the weights
(μ) and the slack values that allow a DMU to achieve the best
efficiency score relative to all other DMUs subject to the
constraint that no DMU can have an efficiency score greater
than 1. Specifically, we obtain the score by solving the

optimization problem:
Minimize

ρ ¼
1−

1

m

Xm

i¼1
κ−
i =xi0

� �
1−

1

s

Xs

j¼1
κþ
i =y j0

� �
w:r:t μ;κ−;κþf g;
s:t:x0 ¼ X0μþ κ− and y0 ¼ Y0μþ κþ;
where μ ≥ 0 ; κ− ≥ 0 and κþ ≥ 0 :

ð11Þ

The minimized objective function value ρ* for a DMU
serves as the efficiency score. A DMU is termed as 100 %
efficient when ρ*=1.

Appendix 2. Obtaining Efficiency Scores Through NDEA

Consider a setting with n DMUs (j=1,…,n) consisting of W
sub-DMUs w=(1,…,W) each. Let mw and sw be the numbers
of inputs and outputs, respectively, for the sub-DMU w. Let
the input vector and output vector for the wth sub-DMU be x0

w

and y0
w, respectively, where x0

w is anmw×1 vector and y0
w is an

sw×1 vector.We describe the slacks-based approach of NDEA
to obtain the efficiency score for DMUs as well as each of
their constituent sub-DMUs.

To capture the interconnected structure, let sub-DMU w
provide l outputs that sub-DMU t uses as inputs. The l outputs
together form the linked intermediate output vector that estab-
lishes the connection between sub-DMU w and sub-DMU t.
We denote the linked intermediate output vector as denoted by
z0
(w,t), a vector with dimensionality lw×1. We now define the
production possibility set of the wth sub-DMU of a DMU as
follows:

xw0 ; y
w
0 ; z

w;tð Þ
0

n o
: P ¼ xw0 ; y

w
0 ; z

w;tð Þ
0

� �
xw0 ≥X

w0
μw; yw0 ≤Y

w0
μw; z w;tð Þ

0 ≥z
��� w;tð Þ0

μw;μw≥0
� �

: ð12Þ

In Eq. 19, μw is a n×1 nonnegative vector. μw enables
the comparison of the input–output vector of a particular
sub-DMU within a DMU (x0

w,y0
w) to the inputs and out-

puts of the same sub-DMU across all DMUs. The col-
lective input–output vector of a particular sub-DMU
across all DMUs is captured in (Xw,Yw), where Xw is
the n×mw input matrix of the wth sub-DMU across all
DMUs, and Yw is the n×sw output matrix of the wth sub-
DMU across all DMUs.

The vector μw also enables the comparison of the linked
intermediate output vector of a particular sub-DMU within a
DMU z0

(w,t) to the collective linked intermediate output vector
of the same sub-DMU across all DMUs. We denote the
collective linked intermediate output vector as Z(w,t), an n×

lw matrix of linked outputs that encapsulate the outputs
produced by the wth sub-DMU and used as inputs by the tth

sub-DMU. Analogous to DEA, we establish the following
equality in NDEA:

xw0 ¼ Xw0
μw þ κ‐

w; ð13Þ

yw0 ¼ Yw 0
μw þ κþ

w; ð14Þ

where ‐
w is the input excess slack vector, and the þ

w is
the output shortfall vector of the wth sub-DMU. In addi-
tion, we introduce a linking constraint to capture the idea
that the intermediate linked outputs produced by the wth
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sub-DMU are beyond the control of the tth sub-DMU
(see [32], p. 4):

μwZ w;tð Þ ¼ μtZ w;tð Þ: ð15Þ

Now, the sub-DMU level efficiency score (ρw) is given by

ρw ¼
1−

1

mw

Xm

i¼1
κ−
wi=x

w
0i

� �
1−

1

sw

Xs

j¼1
κþ
wi=y

w
0 j

� �; ð16Þ

and the DMU’s overall efficiency scores across all sub-DMUs
is given by

ρ ¼

XW

w¼1
1−

1

mw

Xm

i¼1
κ−
wi=x

w
0i

� �	 

XW

w¼1
1−

1

sw

Xs

j¼1
κþ
wi=y

w
0 j

� �	 
: ð17Þ

To solve for both the sub-DMU and DMU efficiencies, we
determine the weights (μw) for each sub-DMU and the slack
values by allowing the firm to be as efficient as possible given
its constraints. To this end, we obtain ρ* (DMU efficiency)
and ρw

* (sub-DMU efficiency) by solving the following prob-
lem:

Minimize

ρ ¼

XW

w¼1
1−

1

mw

Xm

i¼1
κ−
wi=x

w
0i

� �	 

XW

w¼1
1−

1

sw

Xs

j¼1
κþ
wi=y

w
0 j

� �	 
:

w :r : t μw; κ‐
w;κ

þ
w

� �
;

s:t xw0 ¼ Xw0
μw þ κ‐

w and yw0 ¼ Yw0
μw þ κþ

w

where μw ≥ 0 ; κ−
w ≥ 0 and κþ

w ≥ 0 :

ð18Þ

Appendix 3. Multivariate Sliced Inverse Regression

Consider the univariate SIR model, Y=g(Xα1,Xα2,⋯,Xαr),
described by Eq. 5 where Y is a univariate vector of n obser-
vations, g(.) is an unknown function, X is an n×mmatrix ofm
inputs, αj (j=1,…,r) are m×1 vectors of coefficients (r<m).
To estimate the set of vectors αj, we first define the covariance
matrix

Ση ¼ cov E X
���Yh i� �

: ð19Þ

Then, we solve the generalized eigenvalue decomposition
of Ση with respect to the covariance matrix ΣX. The set of
vectorsαj yield the solutions to the eigenvalue decomposition:

Σηαr ¼ λrΣXαr; ð20Þ

λ1 > λ2 > … > λp; ð21Þ

α
0
rΣXαr ¼ 1: ð22Þ

To implement the eigenvalue decomposition using sample
data, we require a sample estimate of the matrix Ση. Accord-
ingly, we create H slices of Y and denote the slices as h=(1,2,
…H). Further, we partition the corresponding rows of the X
matrix into H slices. Next, we compute the means of the

independent variables in each slice and denote them by Xh .
We obtain the sample estimate of Ση via

bΣη ¼
X

h¼1
H bph X

�
h−X

�� �
X
�

h−X
�� �0: ð23Þ

In (C5),bph is the proportion of observations falling into the

slice h, and X is the grand mean across the entire sample. We
replace Ση in Eq. 20 by Eq. 23 and ΣX by the usual sample
variance–covariance matrix.

For our purpose, we need to extract only the principal
eigenvector, i.e., we only need the first of the vectors αj. The
principal eigenvector yields the estimated bα1 , which is con-
sistent and not sensitive to the number of slices [24]. We
obtain the standard errors of bα1 from the square root of the
diagonal values of the following matrix:

1−bλ1bλ1

n−1 bΣX

−1
ð24Þ

Next, to accommodate multiple outputs, we create a
composite-dependent variable Yθ1, where θ1 is the s×1 vector
of weights in the following model:

Yθ1 ¼ g Xα1ð Þ: ð25Þ

To estimate the weights θ1, we switch the roles of (Y,X) in the
above univariate SIR algorithm. Specifically, we consider the
composite scalar variable of n observations COMPX ¼ Xbα1 as
the new dependent variable and consider the matrixYas the new
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independent variables. We then reapply the univariate SIR algo-
rithm to extract the principal eigenvector of s×1 dimension that
serves as the estimate of θ1. We then recreate the scalar variable

of n observations COMPY ¼ Ybθ1 . Using COMPYand the data
matrix X, we apply the univariate SIR algorithm to obtain bα1;

then by using the resulting COMPX and the data matrix Y, we

obtain bθ1 . We alternate these two steps until convergence in the

estimates bθ1; bα1

� �
. By alternating these steps, MSIR reduces

the dimensionality of both Y and X without knowing the link
function g(⋅). Li et al. [24] developed this iterative procedure,
known as the alternating SIR, to tackle multivariate response
variables and proved that the algorithm converges in finite
number of steps equal to the dimensionality of α1.
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