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Abstract

The importance of optimal marketing communications mix decisions is well-recognized by both marketing scholars and practitioners. A
significant volume of work has addressed the problem of dynamic marketing mix optimization assuming constant effectiveness of marketing
instruments. However, the effectiveness of marketing communications varies over time for a variety of reasons. Moreover, due to factors such as
inflation or deflation in media prices and/or raw material inputs, there can be differential changes in the costs of communications and/or margins
on the good (or service) sold over time. The academic literature offers little normative direction on how time-varying marketing effectiveness and
costs drive optimal marketing-mix levels and their relative allocation. The authors shed light on these issues by solving a monopoly firm's finite
horizon dynamic marketing communications mix optimization problem involving two marketing instruments with time-varying parameters, i.e.,
the marketing effectiveness parameters, media costs, and product margin are all allowed to vary over time. First, they find that the structure of the
solutions is similar to that of the classic Nerlove–Arrow model, for a completely general nature of time-varying effectiveness. Second, their model
can be used by managers to exactly determine whether and when to switch their marketing-mix emphasis (defined by the marketing element
receiving the dominant portion of the budget) over a finite planning horizon. In sum, the authors expand knowledge on optimal allocation
of marketing resources with time-varying effectiveness. They also extend their solution to incorporate multiple (more than two) marketing
instruments.
© 2011 Direct Marketing Educational Foundation, Inc. Published by Elsevier Inc. All rights reserved.
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Introduction

Companies' marketing communications resource allocation
decisions have become considerably more complex as the
channels available to reach consumers have expanded to include
more interactive marketing vehicles, e.g., online display, paid
search, mobile, and social media, in addition to traditional
marketing vehicles, e.g., TV, print, radio, and personal selling
(Barwise and Farley 2005; Naik and Peters 2009; Marketing
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Science Institute 2010–2012 Research Priorities). However, a
recent global survey byMcKinsey & Co. (Doctorow, Hoblit, and
Sekhar 2009) reports that companies tend to allocate marketing
spending based on historical allocations and rules of thumb far
more than quantitativemeasures. This state of affairs has persisted
for decades (e.g., Mantrala 2002) even though optimal allocation
can significantly enhance a firm's profitability, sometimes by as
much as 400% (e.g., Raman 2010). Consequently, a large volume
of work in marketing has focused on developing normative
rules for marketing resource allocation decisions based onmodels
of market response to marketing efforts (e.g. see surveys of the
literature by Gupta and Steenburgh 2008; Hanssens, Parsons, and
Schultz 2003; Mantrala 2002; Shankar 2009).

A core insight from extant normative analyses is that, subject
to cost considerations, amarketing input with higher effectiveness
Inc. Published by Elsevier Inc. All rights reserved.
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(sales response elasticity) deserves more of the overall budget's
allocation than one that is less effective (e.g., Gatignon and
Hanssens 1987). However, models for dynamic marketing
resource allocation typically assume that marketing effectiveness
is constant over time. In reality, marketing effectiveness can vary
over time, e.g., consumer segments, values and tastes change
as products age, and the competitive landscape or economic
conditions change, making the aggregated market less or more
responsive over time to marketing efforts, e.g., Shankar (2009).
Empirical studies that have documented time-varying effective-
ness of marketing instruments include Erickson andMontgomery
(1980), Jedidi, Mela, and Gupta (1999), Krishnamurthi and
Papatla (2003), Mahajan, Bretschneider, and Bradford (1980),
Naik, Mantrala, and Sawyer (1998), Parsons (1975), Winer
(1979).

A concise summary of empirical models of marketing
dynamics incorporating time-varying parameters is provided by
Leeflang et al. (2009) who note that they expect time-varying
parameter issues to be increasingly relevant in future research.
Contributing to this expectation is the emergence of online media
as important channels of communication in addition to traditional
offline sources (Naik and Peters 2009). It is acknowledged
that offline and online media communications can have varying
effectiveness and impacts over different stages of consumer
goods buyers' “path-to-purchase” (e.g., Shankar et al. 2011) and
business customers' “purchase funnels” (e.g., Mantrala and
Albers 2010; Wiesel, Pauwels, and Arts forthcoming). As a
result, optimal budget allocations between online and offline
marketing vehicles are likely to vary over the course of a new
consumer or business product marketing campaign. Moreover,
even in situations where the effectiveness of marketing inputs is
constant, there can be differential changes in the costs of
communications over time due to environmental factors such as
inflation or deflation in media prices (e.g., Bradshaw 2010).
Time-varying costs can also impact optimal media expenditure
ratios, since they contribute to the overall effectiveness of a
marketing resource from a profitability standpoint.

Existing research, however, provides little guidance on the
implications of time-varying effectiveness and costs for market-
ing mix allocations over short and intermediate term horizons
(e.g., 2–3 years) even though it is a fundamental managerial issue
(Mahajan, Bretschneider, and Bradford 1980). In their review of
marketing dynamics research, Leeflang et al. (2009, p 16) note
that there is an “acute shortage of normative studies developing
navigation systems that allow managers to optimize marketing
efforts, or at least investigate what-if scenarios.” Two questions
of considerable interest and importance to marketing managers
are what the balance between expenditures allocated toward two
or more marketing activities, e.g., an online and offline activity,
should be, and how that should change over the planning horizon
when effectiveness and/or cost parameters are time-varying (see
also MSI 2010–2012 Research Priorities, p 9).

In this paper, we derive model-based normative rules for
optimal marketing activity planning by a monopoly firm in the
presence of time-varying effectiveness. Specifically, we consider
a two-variable extension of the well-known Nerlove–Arrow
(NA) model with time-varying effectiveness and cost parameters
(or ‘TVNA’ model) and solve for the optimal ratio of marketing
resources over the planning horizon by applying new de-
velopments in finite horizon optimal control (Raman 2006). We
obtain a solution that has two notable properties: first, it has a
simple, closed-form that generalizes the solution to the classic NA
model that assumes constant effectiveness parameters. Second,
the solution is general in that it can incorporate any continuous
form of time-varying effectiveness of the activities (e.g. linear
increases, sinusoidal, state-dependent). That is, our result informs
managers about the trajectory of optimal marketing allocations
over a finite horizon, whatever be the functional form of the time-
variation in the two marketing inputs' effectiveness they face
or wish to examine. For expositional clarity, we focus on two
marketing activities but generalize our analysis to multiple
activities, as in Naik and Raman (2003), in Appendix B.

The rest of the paper is organized as follows. In the next section,
we first develop the TVNA model which proposes a general
relationship between a firm's sales and marketing investments
allowing for time-varying effectiveness. Then, using optimal
control theory, we analytically determine how a firm whose sales
follow the TVNA model should set its marketing investments
optimally over a finite planning horizon. Further analysis of
the general solution provides insights into our remaining research
questions. We conclude with a summary of the managerial
takeaways and suggested directions for future research.

Model Development

Market Response Model Formulation

While a variety of aggregate dynamic marketing response
models exist in the literature (see e.g., Little 1979), perhaps the
most parsimonious is the classic goodwill accumulation model
of Nerlove and Arrow (1962). The basic idea of the NAmodel is
that goodwill accumulates as the spending levels of marketing
activities increase, and decays exponentially when marketing
activities are turned off. In practice, goodwill can be related to
relevant observed outcomes such as sales. Specifically, a two-
variable form of the NA model is given by

dS
dt

= −δS + β1ut + β2vt ð1Þ

where S is the sales of the product, δ represents the rate of decay
in sales, and u and v represent the units of the two marketing
activities (e.g. number of sales calls, ad exposures, to which we
will add cost-multipliers subsequently). Also β1 and β2 represent
the effectiveness of each of the marketing activities in generating
sales. For tractability, we assume the sales growth rate is a linear
function of the two marketing efforts, u and v, whose monetary
costs are time-varying and increase in a convex fashion as their
units increase.While the classic Nerlove–Arrowmodel relates the
long-term cumulative effect of advertising to a construct called
“goodwill,” it is equivalent to Equation (1) when sales is assumed
to be a linear function of goodwill as we do, consistent with
previously published research, e.g., Naik and Raman (2003) and
Raman (2006, 2010).

http://www.msi.org/research/index.cfm?id=271
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Time-varying Nerlove–Arrow (TVNA) Market Response Model

We now extend Equation (1) to incorporate time-varying
effectiveness parameters as follows:

dS
dt

= −δS + β1 tð Þut + β2 tð Þvt ð2Þ

where all terms are as previously defined, except that β1(t) and β2(t)
now reflect the time-varying effectiveness of u and v, respectively.
We allow β1(t) and β2(t) to be general functions of time with the
only restrictions that they be continuous and differentiable at least
once. This allows specification of a variety of functions such as
polynomial functions (e.g. Winer 1979) in a specific application.
An example of a linear polynomial function of time is

β1 tð Þ¼a0 + a1t: ð3Þ
Another example of a TVNAmodel is themodel of advertising

effectiveness formulated by Naik, Mantrala, and Sawyer (1998),
which allows for state-dependence in the effectiveness term. In
practice, researchers can choose the best-fitting form.

Decision Problem Formulation and Solution

We consider a firm that is interested in maximizing its profits
over a finite time horizon T, which could be several years long in
many companies' marketing planning process (e.g.McDonald and
Keegan 2001) or just a fewweeks for short life-cycle campaigns or
products such as motion pictures. We allow the firm's marginm(t)
on sales (price less cost of goods sold) to vary over time in an
arbitrary continuous manner, e.g., due to fluctuations in raw
material input costs even though the price stays fixed. We assume
that at the end of the planning horizon of length T, the firm seeks
to salvage a fraction θ of its contribution revenuesm(T)S(T), where
S(T) is the value of the final level of the state variable at the end of
the planning horizon. Therefore, after accounting for a discount
factor ρ that the firm places on its revenue, the discounted salvage
value at the end of the planning horizon is given by m(T)Sθe−ρT

where the parameter θN0, captures a number of substantively
interesting scenarios (see, e.g., Raman's 2006 use of this salvage
value formulation in the optimal planning of advertising over a
finite planning horizon with constant advertising effectiveness).

Incorporating these assumptions, the firm seeks to optimally
allocate u(t) and v(t) over its planning horizon T to maximize
discounted long-term profits. This problem is mathematically
expressed as:

Maximize J u; vð Þ = ∫
T

0
e−ρtπ S tð Þ; u tð Þ; v tð Þð Þdt + mSθe−ρT ; ð4Þ

where J is the objective functional of the firm,

π S; u; vð Þ = m tð ÞS−c1 tð Þu2−c2 tð Þv2; ð5Þ
subject to the dynamics in Equation (2) and the salvage value
mSθe−ρT.

We introduce a quadratic cost of effort structure as given by the
squared-terms pertaining to u and v in Equation (5). Additionally,
we allow for the monetary costs per unit of the two marketing
efforts to be different. For example, Gopalakrishna and Chatterjee
(1992) state that the unit cost of a sales call ismuch higher than the
unit cost of a print advertisement. Similarly, the cost per 1000
impressions (CPM) or “cost per action” (CPA) varies across
online and offline media ads (e.g., Evans 2009). We also allow
these costs of marketing activities to be time-varying, e.g., due to
factors like media price inflation. Specifically, we capture
this through the parameters c1(t) and c2(t) in Equation (5). Thus,
c1(t)Nc2(t), implies that the unit cost of u is higher than that of v at t.

Solution Procedure

As highlighted earlier, a majority of the work on dynamically
optimal marketing resource allocation assumes constant effective-
ness. A notable exception is the work by Aravindakshan, Peters,
and Naik (2011) that addresses spatio-temporal optimal allocation
of advertising with time-varying parameters. However, this work,
akin to the majority of extant research on integrated marketing
communications (IMC), studies the optimal allocation of resources
over an infinite planning horizon. Mathematically, the assumption
of infinite horizon makes the dynamic optimization problemmore
tractable to solve. However, most real-world-planning scenarios
occur over finite horizons. Time-varying effectiveness parameters
in conjunction with optimization over a finite horizon makes
discovery of the analytical solution mathematically challenging
but the payoff is its greater suitability for managerial implemen-
tation. Below we present the key normative results of managerial
interest while relegating more details about the solution procedure
to Appendix A for the interested reader.
Step 1. Defining the
value function
The key term in the problem is defined by the
value function V(s, t, T),
V s; t; Tð Þ = max
U

∫
T

t
e−ρwπ S wð Þ;U ;wð Þdw

" #
V(.) denotes the maximum profit that can be
achieved by using the optimal marketing mix
over the remaining horizon [t, T], starting from
an arbitrary state s, and U denotes the control
vector—U=(u(t), v(t)). The instantaneous profit
is π(t)=m(t)S−c1(t)u2−c2(t)v2 where S(t) is the
instantaneous sales rate at time “t.”
Step 2. Hamilton–Jacobi–
Bellman (HJB) equation
The value function V(s, t, T) satisfies the
Hamilton–Jacobi–Bellman (HJB) equation
(Fleming and Rishel 1975),

Vt + max
U

e−ρtπ s;U ; tð Þ + Vsf s;U ; tð ÞÞ½ � = 0

where Vs=∂V/∂s, and Vt=∂V/∂t. The function
f (s, U, t) is defined by the right-hand side of
Equation (2).
Step 3. Define boundary
values
The firm seeks to ensure that its salvage value
at the end of the planning horizon is captured.
Therefore the value function at time t=T is given
by V(S, T, T)=m(T)Sθe−ρT.
Step 4. Finding a value
function
The solution procedure involves finding an
appropriate value function V(s, t, T) that satisfies
the Hamilton–Jacobi–Bellman (HJB) equation
(Fleming and Rishel 1975). We solve this two-point
boundary value problem, using the methodology
developed in Raman (2006), which uses the
method of undetermined parameters.
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Normative Analysis and Insights

Optimal Marketing Activities with Time-varying Parameters

Applying the above solution procedure, we find that the
optimal marketing efforts u⁎(t) and v⁎(t) are given by

u tð Þ = F tð Þβ1 tð Þ
2c1 tð Þ

v tð Þ = F tð Þβ2 tð Þ
2c2 tð Þ

ð6Þ

where,

F tð Þ = e− δ+ρð Þ T−tð Þ
�
e δ+ρð ÞT ∫t1−e

− δ+ρð Þsm sð Þds−e δ+ρð ÞT ∫T1 −e
− δ+ρð Þsm sð Þds

+ θm Tð Þ
�
: ð7Þ

Hereafter, we will call F(t) the finite horizon effect. It is
noteworthy that a model with completely general time-varying
marketing effectiveness parameters yields closed-form optimal
solutions very similar in structure to the classic NA model. The
optimal spending levels in Equations (6) and (7) also exhibit
fundamental similarities to prior results (Naik and Raman 2003;
Naik, Raman, and Winer 2005) in that they are proportional to
the effectiveness parameters. Specifically, when we set βi(t)=βi,
and ci(t)=ci for i=1,2, i.e., we restrict the marketing effective-
ness and cost parameters to be constant, assume m(t)=m
(constant margin), and set the salvage value to 0, we retrieve the
Nerlove and Arrow (1962) model solution. Hence, our solution
retains the parsimonious structure of constant-parameter settings
while being completely general with respect to time-varying
marketing effectiveness and costs.

Examining Equation (6), we see that the optimal allocations
to the two marketing activities are directly proportional to the
effectiveness and inversely proportional to their costs. This
would explain why companies spend on interactive activities
like Google Ad Words, Facebook and Twitter even when their
effectiveness is formally undocumented and unproven —
namely, because they are relatively cheaper than TV.

Insights into Dynamics of Optimal Trajectories

We see from the solutions in Equations (6) and (7), that
optimal marketing trajectories u⁎(t) and v⁎(t) can follow
increasing (e.g., du⁎/dtN0), decreasing (e.g., du⁎/dtb0) or
constant patterns (e.g., du⁎/dt=0) over the planning horizon
depending on the time-varying nature of the effectiveness
parameters. Furthermore, past literature on optimal advertising
has shown that the functional form of themarket-response heavily
influences the outcome of the optimal advertising schedule.
Specifically, the choice of a concave market-response function
always yields an “even” (i.e. constant level of spending) schedule
at optimality (see, e.g. Mahajan and Muller 1986). However,
the solutions in Equations (6) and (7) imply that if the parameters
are indeed time-varying, the optimal policy's trajectory can be
different from even spending. For example, if β1(t) follows a
second-order polynomial function in time (e.g. Winer 1979), the
optimal policy will not be even.

Moreover, even if the effectiveness of the marketing
activities remains constant over time, the optimal spending
trajectories are influenced by how media costs change over
time, e.g. inflation trends. Specifically, spending on a marketing
activity should increase (decrease) as its cost decreases
(increases) over time.

The dynamics of the optimal policies we have derived may
not seem surprising since they are proportional to the time-
varying parameters. However, the interesting point here is that,
even if the parameters were constant, the optimal policies
will be time varying due to the finite horizon effect, F(t)
(Equation (7)).

Insights into Finite Horizon Effect

To better understand the finite horizon effect, consider the
special case where the margin and media costs are constant. In
that case, the finite horizon effect F(t) reduces to the expression
FHE(t), where,

FHE tð Þ = ð1−e− T−tð Þ δ+ρð Þð1−θðδ+ρÞÞ: ð8Þ

Equation (8) rewards close analysis. First, note that

Limit
T→∞

FHE tð Þ½ � = Limit
T→∞

1−e− T−tð Þ δ+ρð Þ 1−θ δ+ρð Þð Þ
� �h i

= 1:

ð9Þ

Thus, the finite-horizon effect is unity as the size of the
horizon becomes infinite. Consequently, provided that the
effectiveness parameters βk(t), media costs ck(t) and margin m(t)
all converge to steady state levels over an infinitely long time
horizon, the finite-horizon policies intuitively reduce to the
infinite horizon policies.

Next, the derivative of FHE(t) with respect to time ‘t’ is

∂ FHE tð Þð Þ
∂t

= δ+ρð Þe− T−tð Þ δ + ρð Þ 1−θ δ+ρð Þð Þ; ð10Þ

which is negative for θ N 1
δ + ρð Þ, positive for θ b

1
δ + ρð Þ, and zero

when θ = 1
δ + ρð Þ.

These expressions show the critical role played by the
salvage value parameter θ in a finite horizon budgeting and
allocation problem. In the first case, the finite horizon effect
decreases over time, in the second case, the finite horizon effect
increases over time and in the third case, the finite horizon effect
is zero, which means that all temporal variation in the optimal
policies is driven purely by the temporal variation in βk(t), ck(t)
and m(t).
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To understand the influence of the horizon size on the finite
horizon effect, consider the derivative of FHE(t) with respect to
‘T’ in Equation (11), below

∂ FHE tð Þð Þ
∂T

= δ+ρð Þe− T−tð Þ δ + ρð Þ −1+ θ δ+ρð Þð Þ: ð11Þ

Equation (11), exhibits, as expected, exactly the opposite
behavior as it does with respect to time ‘t’ (Equation (10)).

Finally, the influence of the salvage value parameter θ on the
finite horizon effect is given by the derivative of FHE(t) with
respect to ‘θ:’

∂ FHE tð Þð Þ
∂θ

= δ+ρð Þe− T−tð Þ δ + ρð Þ ð12Þ

which is always positive. Consequently, the finite horizon effect
increases with size of the salvage value parameter θ a result that
agrees with intuition because the salvage value of terminal sales
S(T) is proportional to θ. Thus, when θ=0, the finite horizon
effect is one (i.e., there is no finite horizon effect), and then, as θ
increases, the finite horizon effect steadily increases with θ.
Thus, the optimal policies in Equation (6) need not simply track
the time-variation of the effectiveness parameters even though
they are proportional to the latter because the finite horizon
effect may be dominant. Consider, for example, the case where
β1(t) is increasing over time: if the decay and discount rate are
large enough, the finite horizon effect may decrease at a rate
greater than the rate at which β1(t) increases, making it optimal
to decrease u(t) over time even though its effectiveness (β1(t)) is
increasing. That is, the optimal allocations over a finite horizon
are fundamentally different from those optimized over an
infinite planning horizon because they are affected by the length
of the horizon and need not always track the temporal patterns
of the effectiveness parameters—a finding of substantive
interest for managers.

Insights into Switching Emphasis between Marketing Activities
over Time

Shifts in emphasis from one marketing variable to the other
(by way of the dominant portion of the budget going toward
one activity or the other) over a campaign planning horizon
are observed in practice and have been documented in the
marketing literature (see, e.g., Shankar 2009). For example, in
the pharmaceutical industry, a combination of a “pull”marketing
strategy through the use of journal advertising and a “push”
marketing strategy through the use of a sales rep detailing (and
growing e-Detailing) is employed (Kotler and Keller 2008). In
the beginning of a new drug's life-cycle, while there is larger
uncertainty surrounding its efficacy, a pull strategy is shown to
be more effective. However, as the physician learns through
experience, the uncertainty about a drug's efficacy is substan-
tially reduced, and the effects of detailing (i.e. personal selling)
are likely to be more direct and to dominate the effect of
advertising (Narayanan, Manchanda, and Chintagunta 2005).
Notwithstanding such empirical evidence, normative
marketing-mix guidance on the optimal planning of marketing
resource allocation efforts through the length of the planning
horizon is missing in the literature. Our model results indicate,
first, that as a function of the time-varying effectiveness of each
marketing activity, the optimal allocation ratio of marketing
activities is also time-varying. Second, the resource costs
per unit influence the optimal allocation ratio. Specifically,
let us define x⁎(t)=u⁎(t)/v⁎(t) to be the ratio which reflects
the allocation emphasis placed on u relative to v during the
planning period. The mathematical expression for x⁎(t) is
given as

x� tð Þ = β1 tð Þc2 tð Þ
β2 tð Þc1 tð Þ ð13Þ

Equation (13) shows that the allocation emphasis ratio does
not depend on the discount rate and carry-over parameter, and is
larger when β1(t) is larger, when c1(t) is smaller, c2(t) is larger,
or when β2(t) is smaller. Another perspective on this follows by

noting that
β1 tð Þc2 tð Þ
β2 tð Þc1 tð ÞN 1⇔

β1 tð Þ
β2 tð ÞN

c1 tð Þ
c2 tð Þ. Thus, instrument 1

should be emphasized more than instrument 2 if its relative
effectiveness exceeds its relative cost compared to instrument 2.
Equation (13) shows that, depending upon the nature of time
variation in the four parameters β1(t), β2(t), c1(t), c2(t), the
emphasis on one instrument versus the other can completely
reverse itself over the planning horizon. Thus, it can be optimal
for an instrument heavily used in the early stage of the PLC to
be de-emphasized in a later stage of the PLC, while the other
instrument, used sparingly early on could later start receiving
the lion's share the total marketing budget.

In sum, our results shed light on the optimal allocation of
marketing resources when marketing efforts have time-varying
effectiveness. In addition, they highlight the role of changing
effectiveness in determining the dominance of a variable (as
defined by its allocated budget) in a planning horizon.

Managerial Implementation of Solution

The managerial import of Equations (6) and (7) is that in
practice, managers must perform two tasks to obtain dynam-
ically optimal marketing plans under any general time-varying
structure.

First, they need to estimate a time-varying response model —
which can be achieved with the Kalman filter as it overcomes a
degrees of freedom problem that would arise with ordinary least
squares (OLS) estimation, even with only one marketing activity
with time-varying effectiveness. Specifically, considering the
model intercept and effectiveness coefficient continuously change
over the time for which the data is observed, the number of model
parameters to be estimated in the case of OLS will exceed the
number of observations. In contrast, the Kalman Filter tackles the
degrees of freedom problem in the followingway. First, it separates
the dynamics of the setting into the evolution of unobserved states
that are linked to the observed data. Second, the unobserved state
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formulation can be specified to capture both deterministic aspects
(e.g. an AR(1) formulation) or stochastic aspects (e.g. an MA(1)
formulation) in the coefficient β1(t). Next, it derives the conditional
likelihood of jointly observing the sequence of unobserved states
and the observed data, by decomposing the joint density into the
product of conditional density andmarginal density. The advantage
of using the conditional density in the Kalman filter is that the inter-
temporal dependence in the observed data, induced by the time-
varying parameters, is fully captured without severely losing
degrees of freedom,whichwould be the case if themarginal density
is used (such as in OLS). The parameters that maximize the
likelihood are then obtained, followed by inference (see Naik 1999;
Naik, Mantrala, and Sawyer 1998 for examples of Kalman filter
based time-varying response estimation in marketing and Harvey
1994, pp 104–107 for a description of the Kalman recursions).

Once the time-varying coefficient/s have been estimated,
decision-makers can compute and utilize the marketing effec-
tiveness value at any point ‘t,’ (e.g. if β1= .3+ .01t, it would be 3.1
at t=10), as well as the costs and the margin at each time ‘t,’ in
Equations (6) and (7) to obtain the optimal solutions with relative
ease. This also enablesmanagers to compare the optimal spending
trajectory from the time-varying effectiveness case to that of
the constant effectiveness case.

Conclusion

The daunting mathematical problem of simultaneously
optimizing the firm's profitability with respect to multiple
marketing mix variables in a dynamic sales response environ-
ment makes the use of simplifying yet sub-optimal heuristics
and decision rules attractive to managers (Mantrala 2002).
However, even though repeated surveys suggest that managers
are unlikely to directly use sophisticated optimization solutions
in their decision-making, they can benefit from the directional
conclusions and insights for effective spending offered by
normative marketing models that capture the essence and
complexity of their environment and decision-making process.
Over time, such insights can become part of industries' “best
practices” that improve profitability. In this vein, this paper
aims to contribute to both effective marketing budgeting theory
and practice by deriving rules for optimal marketing mix
expenditures over time that account for two real but neglected
aspects of practical problems in models to date: marketing
instruments' time-varying effectiveness and costs, and the length
of planning horizons.

In this paper, we developed a new analytical framework to
optimize the marketing mix allocation – focusing on the two-
variable case – over a finite horizon when the response function
parameters are changing over time. We obtained closed-form
analytical results showing that the optimal allocations are
proportional to the effectiveness parameters, consistent with
earlier results of Naik and Raman (2003) and Naik, Raman, and
Winer (2005), but also providing the new insight that this need not
always be the case because of the finite horizon effect. Further,
due to the time-varying parameters, the optimal allocation ratio
will also change over time, thereby directing managers to
emphasize different marketing mix elements at different times
over the planning horizon. We also found that the allocation ratio
will switch over the planning horizon under certain conditions,
causing complete reversals in the emphasis placed on one
instrument versus the other. While conventional wisdom on the
product lifecyle (PLC) concept recommends doing so – for
example the recommendation that advertising should be empha-
sized over personal selling in the introductory phase while
personal selling should receive greater weight later in the PLC –
analytical proof that such actions are optimal is missing in the
literature up to this point. We establish the precise nature –
quantitatively and qualitatively – of the optimal variation in
spending on different marketing instruments over time such as
offline and online media. Thus, our research is a valuable
complement to recent empirical research in marketing
dynamics emphasizing time-varying effectiveness parameters
(e.g., Leeflang et al. 2009) in that it provides normative rules
for resource allocation. Managers can combine these rules
with empirically derived parameter estimates to improve their
marketing resource allocation.

Directions for Future Research

A limitation of the analysis in this paper is that it does not
incorporate competition (e.g., Shankar 2009). This is primarily
because solving a finite horizon competitive marketing resource
allocation problem with time-varying parameters is analytically
intractable, e.g., Bass et al. (2005). Earlier analyses of dynamic
marketing resource allocation optimization that incorporate
competition assume constant marketing effectiveness parame-
ters, e.g., Raman and Naik (2004) and Naik, Raman, and Winer
(2005). Considering that the extant literature offers very limited
insights into optimal marketing resource allocation over time
with time-varying parameters even for the case of a monopoly
firm we focus on this problem in this paper. Our analysis also
does not consider the effects of uncertainty. Incorporating
competition and uncertainty in marketing models with time-
varying parameters is a worthy direction for future research.
However, the solutions are unlikely to be analytically tractable
and will probably require numerical simulation analyses to gain
managerially relevant insights.

Another interesting direction for research is to investigate
dynamic marketing mix problems that involve both time-varying
effectiveness parameters and synergy between the marketing
instruments, thereby extending the analyses of Naik and Raman
(2003) and Schultz, Block, and Raman (2009a,b, in press), all of
which assumed constant effectiveness parameters. A third
emerging direction for research is dynamic marketing mix
optimization by platform firms that havemultiple revenue sources
(e.g., Sridhar et al. 2009).

Appendix A. Analytical Derivation of Optimality Conditions

The key player in the methodology is defined by

V s; t; Tð Þ = max
U

∫
T

t
e−ρwπ S wð Þ;U ;wð Þdw

" #
ðA1Þ
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where V(s, t, T ), called the value function, denotes the maximum profit that can be achieved by using the optimal marketing mix over the
remaining horizon [t, T], starting from an arbitrary state ‘s’ at time t. The value function V(s, t, T) satisfies the Hamilton–Jacobi–Bellman
(HJB) equation (Fleming and Rishel 1975), where Vs=∂V/∂s, and Vt=∂V/∂t:

Vt + max
U

e−ρtπ s;U ; tð Þ + Vs f s;U ; tð Þð Þ½ � = 0: ðA2Þ

The function f (s, U, t) is defined as: −δS+β1(t)u(t)+β2(t)v(t).
In our problem, the vector U consists of the two decision variables – U= (u(t), v(t)) – and the instantaneous profit is

π tð Þ = m tð Þs–c1 tð Þu2–c2 tð Þv2 ðA3Þ

where S(t) is the instantaneous sales rate at time “t.” The function f (s, U, t) is defined by the right-hand side of Equation (3) in our
paper. We obtain the necessary conditions for dynamic optimality by differentiating the maximand in Bellman's equation with
respect to U and equating the gradient vector to zero, i.e.

e−ρtπVU + Vs fU = 0: ðA4Þ

This yields the system of equations below.

First Order Condition For u : −2c1 tð Þe−ρtu + β1 tð ÞVs = 0
First Order Condition For v : −2c2 tð Þe−ρtv + β2 tð ÞVs = 0

ðA5Þ

We conclude from the above that

u = eρtβ1 tð ÞVs = 2c1 tð Þ ðA6Þ

v = eρtβ2 tð ÞVs = 2c2 tð Þ ðA7Þ

Substituting these expressions for u and v into the HJB equation yields the following second-order nonlinear partial differential
equation for our problem.

Vt +
1
4

4e−ρtm tð Þs−4δsVs +
c1 tð Þβ2

2 + c2 tð Þβ2
1

� �
eρtV 2

s

c1 tð Þc2 tð Þ
� �

= 0 ðA8Þ

The above nonlinear partial differential equation must be solved subject to the initial condition x=x0 and the boundary conditions
at the terminal time t=T, given by the salvage value at the end of the planning horizon: V(S, T, T)=mSθe−ρT. We next solve this two-
point boundary value problem, using the methodology developed in Raman (2006).

Using the method of undetermined parameters, we conjecture a polynomial (in s) solution with time-varying coefficients to the above
PDE. After experimenting with different orders of the polynomial, we find that a quadratic does the job. Consequently, we conjecture the
following solution for V(s, t, T ).

V s; t; Tð Þ = e−ρt s2k1 tð Þ + sk2 tð Þ + k3 tð Þ� 	 ðA9Þ

Next we compute the partial derivatives Vt and Vs under the above conjecture, put the resulting expressions back into Equation
(A8). Substituting the quadratic conjecture and the partial derivatives Vt and Vs from the previous step into the PDE yields a set of
coupled nonlinear ordinary differential equations for the unknown coefficient functions k1(t), k2(t), and k3(t) of the conjectured
quadratic. While the equations determining function k1(t), k2(t), and k3(t) are nonlinear and coupled, they are ordinary – not partial –
differential equations.
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We simultaneously solve these differential equations subject to the boundary conditions on V(s, t, T) at t=T. The system of
equations we solve is shown below:

k1 tð Þ = 0

4c1 tð Þc2 tð Þ dk2
dt

−4 ρ+λð Þc1 tð Þc2 tð Þk2 tð Þ+4c1 tð Þc2 tð Þm tð Þ = 0

4c1 tð Þc2 tð Þ dk3
dt

−4ρc1 tð Þc2 tð Þk3 tð Þ + c1 tð Þβ2
2 tð Þ + c2 tð Þβ2

1 tð Þ� �
k22 tð Þ = 0

e δ + ρð Þt∫t1−e− δ + ρð Þsm sð Þds−e δ + ρð Þt− δ + ρð ÞT eT δ + ρð Þ� �
∫T1−e− δ + ρð Þsm sð Þds−θm Tð Þ

� �Þ2

β2
1 tð Þc2 tð Þ

e δ + ρð Þt∫
t
1−e

− δ + ρð Þsm sð Þds−e δ + ρð Þt− δ + ρð ÞT eT δ + ρð Þ
� �

∫
T
1−e

− δ + ρð Þsm sð Þds−θm Tð Þ
� ��2

β2
2 tð Þc1 tð Þ

−4ρk3 tð Þc1 tð Þc2 tð Þ + 4c1 tð Þc2 tð Þk30 tð Þ = 0

V s; t; Tð Þ = e−tρ k3 tð Þ+ e t−Tð Þ δ + ρð Þs eT δ + ρð Þ∫
t
1−e

−5 δ + ρð Þm s½ �ds−eT δ + ρð Þ∫T1−e
−5 δ + ρð Þm s½ �ds+θm T½ �

� �� �

ðA10Þ

Substituting the functional forms for k1(t), k2(t), and k3(t) back into Equation (A9), we finally obtain the solution to the PDE. For
brevity, we omit this in the Appendix. We checked that the solution satisfies the boundary conditions. The mathematical derivations
are tedious and were implemented inMathematica. Interested readers may obtain the rest of the details of the optimization algorithm
from the authors. To specify V(s, t, T) completely, we need to find k3(t). This is done as follows — k3(t) satisfies the ODE:

e δ + ρð Þt∫t1−e
− δ + ρð Þsm sð Þds−e δ + ρð Þt− δ + ρð ÞT eT δ + ρð Þ� �

∫T1−e
− δ + ρð Þsm sð Þds−θm Tð Þ

� ��2
β2
1 tð Þc2 tð Þ

e δ + ρð Þt∫t1−e
− δ + ρð Þsm sð Þds−e δ + ρð Þt− δ + ρð ÞT eT δ + ρð Þ� �

∫T1−e
− δ + ρð Þsm sð Þds−θm Tð Þ

� ��2
β2
2 tð Þc1 tð Þ

−4ρk3 tð Þc1 tð Þc2 tð Þ+4c1 tð Þc2 tð Þk′3 tð Þ = 0:

In the above, k3′(t) denotes
dk3 tð Þ
dt

. For any given, arbitrarily specified continuous time-varying functions m(t), c1(t), c2(t), β1(t), β2(t),

we have the complete solution to our model. We simply plug in the functions into the above linear ODE for k3′(t), which always has an
integrating factor, and therefore, although the solution may be algebraically complicated, it will always exist and can be found as shown
below. We may rewrite the above ODE as follows:

k′3 tð Þ−ρk3 tð Þ + G tð Þ = 0

where,

G tð Þ =
e δ + ρð Þt∫t1−e

− δ + ρð Þsm sð Þds−e δ + ρð Þt− δ + ρð ÞT eT δ + ρð Þ� �
∫T1−e

− δ + ρð Þsm sð Þds−θm Tð Þ
� ��2

β2
1 tð Þ

4c2 tð Þ

+
e δ + ρð Þt∫t1−e

− δ + ρð Þsm sð Þds−e δ + ρð Þt− δ + ρð ÞT eT δ + ρð Þ� �
∫T1−e

− δ + ρð Þsm sð Þds−θm Tð Þ
� ��2

β2
2 tð Þ

4c1 tð Þ :

The solution to the ODE is then immediately obvious by inspection—since it always has an integrating factor, k3(t) is given by:

k3 tð Þ = ∫
t

T
e−ρsG sð Þds; where GðtÞ is given by :

G tð Þ =
e δ + ρð Þt∫t1−e

− δ + ρð Þsm sð Þds−e δ + ρð Þt− δ + ρð ÞT eT δ + ρð Þ� �
∫T1−e

− δ + ρð Þsm sð Þds−θm Tð Þ
�� �2

β2
1 tð Þ

4c2 tð Þ

+
e δ + ρð Þt∫t1−e− δ + ρð Þsm sð Þds−e δ + ρð Þt− δ + ρð ÞT eT δ + ρð Þ� �

∫T1−e− δ + ρð Þsm sð Þds−θm Tð Þ
� ��2

β2
2 tð Þ

4c1 tð Þ :

From the solution V(s, t, T), we compute the optimal controls u and v as follows: find the shadow price Vs from the solution, and
substitute it into the expressions for the optimal controls:

u = eρtβ1 tð ÞVs = 2c1 tð Þ; and ðA11Þ

v = eρtβ2 tð ÞVs = 2c2 tð Þ: ðA12Þ
This yields the expressions u* and v* shown in the paper.
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Appendix B. Extension to Multiple Activities

The Value function V(s, t, T ), defined as before, denotes the
maximum profit that can be achieved by using the optimal
marketing mix with ‘n’ instruments over the remaining horizon
[t, T ], starting from an arbitrary state ‘s’ at time t. The value
function V(s, t, T ) satisfies the Hamilton–Jacobi–Bellman
(HJB) equation (Fleming and Rishel 1975), where Vs=∂V/∂s,
and Vt=∂V/∂t:

Vt + max
U

e−ρtπ s;U ; tð Þ + Vs f s;U ; tð Þð Þ½ � = 0: ðB1Þ

The function f (s, U, t) is defined as: −δS + ∑
i=n

i=1
βi tð Þui tð Þ.

where, dS
dt = −δS + ∑

i=n

i=1
βi tð Þui tð Þ. In our problem, the vector U

consists of the ‘n’ decision variables – U= (u1(t), u2(t),..,un(t)) –

and the instantaneous profit is π tð Þ = m tð Þs− ∑
i=n

i=1
ci tð Þu2i

π tð Þ = m tð Þs− ∑
i=n

i=1
ci tð Þu2i ðB2Þ

where S(t)=s is the instantaneous sales rate at time “t.” The
function f(s,U, t) is defined by the right-hand side of Equation (3)
in our paper. We obtain the necessary conditions for dynamic
optimality by differentiating the maximand in Bellman's equation
with respect to U and equating the gradient vector to zero, i.e.

e−ρtπVU + Vs fU = 0 ðB3Þ
This yields the system of ‘n’ equations, 1≤ i≤n, below.

First Order Condition For ui : −2ci tð Þe−ρtui + βi tð ÞVs = 0: ðB4Þ
We conclude from the above that

ui = eρtβi tð ÞVs = 2ci tð Þ: ðB5Þ
Substituting these expressions for ui, 1≤ i≤n, into the HJB

equation yields the following second-order nonlinear partial
differential equation for our problem.

Vt +
1
4

4e−ρtm tð Þs−4δsVs + ∑
i=n

i=1

∏j = n
j≠i; j = 1cj tð Þ

� �
β2
i tð Þ

∏ j = n
j = 1 cj tð Þ

� �
0
@

1
AeρtV 2

s

2
4

3
5= 0

ðB6Þ
In Equation (B6), the notation ∏j = n

j = 1cj denotes the product
c1c2..cn; the notation ∏ j = n

j≠i; j = 1cj denotes the product c1c2..cn in
which all the cj appear except that for which j= i. Equation (B6)
may be simplified to yield Equation (B7) in which the
mathematical structure of the generalization to ‘n’ activities is
made immediately transparent:

Vt +
1
4

4e−ρtm tð Þs−4δsVs + ∑
i=n

i=1

β2
i tð Þ
ci tð Þ


 �
eρtV 2

s

� �
= 0: ðB7Þ

The above nonlinear partial differential equation must be
solved subject to the initial condition x=x0 and the boundary
conditions at the terminal time t=T, given by the salvage value
at the end of the planning horizon: V(S, T, T )=mSθe−ρT. We
next solve this two-point boundary value problem, using the
methodology developed in Raman (2006).

Using the method of undetermined parameters, we conjecture
a polynomial (in s) solution with time-varying coefficients to the
above PDE. After experimenting with different orders of the
polynomial, we find that a quadratic does the job. Consequently,
we conjecture the following solution for V(s, t, T ).

V s; t; Tð Þ = e−ρt s2k1 tð Þ + sk2 tð Þ + k3 tð Þ� 	 ðB8Þ

Next we compute the partial derivatives Vt and Vs under the
above conjecture, put the resulting expressions back into
Equation (B7). Substituting the quadratic conjecture and the
partial derivatives Vt and Vs from the previous step into the PDE
yields a set of coupled nonlinear ordinary differential equations
for the unknown coefficient functions k1(t), k2(t), and k3(t) of
the conjectured quadratic. While the equations determining
function k1(t), k2(t), and k3(t) are nonlinear and coupled, they are
ordinary – not partial – differential equations.

Simultaneously solving these differential equations subject
to the boundary conditions on V(s, t, T ) at t=T yields the
optimal controls u1(t), u2(t),…,un(t). We do not pursue this last
step in this paper—the purpose of this appendix was to derive
the optimality equation for the extension to dynamically optimal
resource allocation for ‘n’ instruments.
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