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Many public policy studies (Martin and Scott 2021) use ran-
domized field experiments for drawing causal conclusions
(e.g., Chen et al. 2020). A typical randomized field experiment
involves a control group and a treatment group to which indi-
vidual units (e.g., consumers, patients) are randomly assigned,
after which an intervention (e.g., a marketing program) is imple-
mented in the treatment group. To assess the efficacy of an inter-
vention, researchers typically estimate the average treatment
effect, which is computed as the mean difference in the
outcome between the units in the treatment group and the
control group. When applying the results of a randomized
experiment, it is assumed that the treatment effect within the
manipulated condition is the same for all the units assigned to
the treatment condition. This may not always be the case, as
the treatment might have differential causal effects on different
subgroups (subgroup differences). More formally, this variation
is called treatment effect heterogeneity. For example, the treat-
ment effect may differ for men and women or for those who
have different types of insurance coverage. By accounting for
treatment effect heterogeneity, public policy researchers can
get a better and more nuanced understanding of the efficacy
of an intervention. Specifically, they can ascertain how the treat-
ment effect may also vary across units based on characteristics
that are not manipulated in the experiment. We discuss three
prominent approaches to account for treatment effect heteroge-
neity: analysis of variance (ANOV A)/regression with covariates
and moderators, a random-coefficients model, and causal forests
(see Table 1). We illustrate each approach using a simulated
version of the data in Chen et al. (2020). Our goal is to
provide a practical understanding of each approach, with a
focus on causal forests.

Screening Completion for Liver Cancer:
A Stylized Example

People at risk for liver cancer or hepatocellular carcinoma
(HCC) should undergo semiannual screening to facilitate
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early detection, which can be lifesaving. Due to low screening
rates, health care institutions invest in patient outreach programs
to encourage and increase screening rates among at-risk popula-
tions. To preserve confidentiality, we simulated the data for a
hypothetical experiment that broadly follows the randomized
experiment in Chen et al. (2020).

This article focuses on two randomized conditions: the
control group (no-outreach condition [n=600]) and the treat-
ment group (outreach condition [n=600]). In the control
group, patients received visit-based HCC screening as recom-
mended by primary or specialty care providers and were not
contacted by anyone else. In the treatment group (outreach),
patients were mailed a one-page letter describing (1) the risk
of HCC in patients with cirrhosis, (2) the benefits and risks of
HCC screening tests, (3) a summary of the screening procedure,
and (4) arecommendation to the patient to make an appointment
for an ultrasound.

The dependent variable was simulated as the probability of a
patient completing the screening (a continuous variable ranging
from 0 to 1 denoting screening probability). The basic dummy-
variable regression equation used to estimate the average treat-
ment effect (or main effect) of the outreach intervention is
written as

Screening; = f, + B, Outreach; + &;. (D

In Equation 1, Screening; is a continuous outcome variable that
indicates the probability of the patient i completing the screen-
ing test. Outreach; refers to the intervention, whether the patient
received the outreach intervention (1 =yes; 0 =the patient was
in the control group). The estimate of f; provides the causal
effect of the outreach intervention. A simple dummy-variable
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regression (Column 1, Web Appendix Table Al) shows the
average treatment effect is positive and statistically significant
(Bl =.181, p<.001). Practically speaking, the outreach inter-
vention increases the screening probability by 18.1 percentage
points compared with the control group (i.e., the mean differ-
ence in screening probability between the patients in the out-
reach condition [.439] and those in the control condition
[.258]).! Stopping the analysis here assumes that the treatment
effect is the same for all 600 patients assigned to the outreach
condition.

The three approaches described in Table 1 can be used to
determine if the benefit of outreach differs for subgroups such
as for male versus female patients or patients with different
types of insurance coverage. The three approaches are
ANOVA/regression with covariates and moderators, random-
coefficients model, and causal forests. The goal is to ascertain
if the average treatment effect should be adjusted downward
or upward in different subgroups. The first two approaches
have been widely used in marketing and are described in the
Web Appendix.

This commentary focuses on causal forests, a technique with
a different conceptual focus. ANOVA/regression and random-
coefficients models are fop-down ways to think about treatment
effect heterogeneity. They start by comparing the mean of the
outcome variable in the treatment group with the mean of the
outcome variable in the control group to get the average treat-
ment effect. Next, they uncover how the main effect may vary
among subgroups. ANOVA/regression uses interaction terms
to dissect the main effect by various subgroups (e.g., gender,
insurance type, a combination of gender and insurance type),
while the random-coefficients models use a combination of
data stacking, random slopes, and interactions to dissect the
main effects.

Top-down approaches are feasible and efficient when the
researcher is interested in testing how the main effect changes
across a relatively small number of moderating conditions
(e.g., two to five) or has a priori ideas about the moderators.
However, in many field experiments, researchers may have
several dozen subgroup variables and a relatively small
sample size. For example, the researcher may have more than
100 variables from the electronic medical records and census
data based on a patient’s geographic location (e.g., household
income, retail growth, unemployment rate). Including these
covariates as moderators in the regression or random-
coefficients model is not feasible as the model will run out of
degrees of freedom. Moreover, the researcher may not have
any basis to a priori specify theory-driven moderators in the
model.

A bottom-up approach such as causal forests uncovers treat-
ment effect heterogeneity with a large number of subgroup var-
iables. This involves obtaining the treatment effect estimate for
each unit in the sample and then relating individual-level

! These simulated results follow Chen et al. (2020), where the average screening
probability is 25% (45%) in the control (outreach) condition in Period 1.

treatment effects to a variety of covariates to understand how
high-treatment-effect individuals differ from low-treatment-
effect individuals. Next, we describe the steps involved in a
causal forests approach.

Causal Forests: Key Steps
Step 1. Obtaining Individual-Level Treatment Effects

To obtain the treatment effect for each of the 600 patients in the
control group, the researcher needs an approach to estimate the
lift in screening probability for every patient in the control group
if they were instead placed in the treatment group. This is inher-
ently an error-prone prediction, as a patient who was placed in
the control group could not have simultaneously been placed in
the treatment group. The researcher also needs an approach to
estimate the lift in screening probability for every patient in
the treatment group as if they were instead placed in the
control group. This is again an error-prone prediction, because
a patient who was placed in the treatment group could not
have simultaneously been placed in the control group.

How can the researcher obtain the treatment effect for every
patient in the sample? A starting point is to look at the mean dif-
ference in the outcome between the patients in the treatment
group and those in the control group within a particular sub-
group (e.g., women); that is,

T; = Avg[Screening; y _ | |Female; = 1]
— Avg[Screening; y, _ o|Female; = 1], 2)

where i indexes a patient, W represents the condition where
W =1 represents the outreach condition and W =0 represents
the control condition, and Female; is a dummy variable indicating
whether the patient is female (coded as 1) or male (coded as 0).
Drawing on this logic, the researcher can define a more fine-
grained subgroup for every patient i by using more patient char-
acteristics to split the sample into subgroups. If we have m
covariates labeled X; to X,,, we could write Equation 2 as

T; = Avg[Screening; y _ X1 =c¢1, Xa =c¢2, ... Xn = Cny]

— Avg[Screening; y _ o|X| =c¢1, X =¢3, ... X =cnl,

©)

where i and W are as previously discussed. We define the sub-

groups by choosing a set of cutoff values ¢, ¢, ...c, for X, Xs,
... Xin, respectively. Assuming X, is gender (=1 if female), X,

is insurance type (coded as 1, 2, ..., 10), and X3 is age (contin-

uous variable from 21 to 90), an exemplary treatment effect for

patient i could be obtained as

T = Avg[Screeningi’ w=1l1X1 =0, X; =1, X35> 65]
— Avg[Screening; w_o|X1 =0, X; =1, X3>65]. (4)
Equation 4 calculates the mean difference in screening out-
comes for male patients over 65 years old with Insurance

Type 1 in the control group and their counterparts in the treat-
ment group. Compared with Equation 2, Equation 4 allows us
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to get a more fine-grained treatment effect estimate. Yet, as we
add more covariates, we introduce more subjectivity into the
choices of variables as well as cutoff values and might create
many subgroups with zero observation. Therefore, the challenge
is to choose the relevant covariates and associated cutoffs while
maintaining the ability to capture the heterogeneity driven by
the combination of covariates.

The causal forest algorithm addresses this challenge by
forming data-driven subgroups. The algorithm splits the data
into subgroups that share a similar profile of patient characteris-
tics and uses the within-subgroup treatment effect as the esti-
mate for any patient who belongs to the corresponding
subgroup. To reduce bias, it uses one part of the sample to deter-
mine the subgroups and the other part to estimate the treatment
effects. To reduce variance of the treatment effect estimates, it
repeats the procedure over many random draws of the sample
and averages the estimates. This algorithm is further developed
into generalized random forests, where the trees are not used to
compute the treatment effect estimates but to create individual-
specific weights (Athey, Tibshirani, and Wager 2019).
Concretely, for the set of independent and identically distributed
patients, indexed i=1, ..., n, we observe the outcome of interest
Y; (screening probability), treatment assignment W;, and a
vector of patient characteristics X; (e.g., gender and insurance
type). The patient-level treatment effect estimate 7; is

L i (Y = i)(Wi — &)

1 Yo (Wi — &)
where o; is patient-level weight, & refers to the estimates
of the propensity score of receiving the treatment
e(x) = P[W;|X; = x], and m; refers to the estimates of the
expected outcome marginalizing over  treatment
m(x) = P[Y;|Xi = x]. For details, see Athey, Tibshirani, and
Wager (2019). The upshot is that the researcher can use the
algorithm to obtain the treatment effect for every individual
with valid confidence intervals.

As an illustration, Figure 1 shows the distribution of the
patient-level treatment effect estimates, 1;, based on the simu-
lated data (i.e., 600 patients in the control condition and 600
patients in the treatment condition). First, we see that the
average treatment effect is .185, which is close to the results
from the main effect of ANOVA/regression model (.181,
Column 1 of Web Appendix Table A1) and that of the random-
coefficients models (.182, Column 2 of Web Appendix
Table A4). Figure 1 also shows that the patient-level treatment
effects vary substantially across patients from 0 percentage
points to 31 percentage points.

; )

Step 2. Discovering Patterns in Treatment Effects Across
Individuals

After collecting these treatment effect estimates, we can conduct
a second-stage analysis to study how they vary by patient char-
acteristics using a linear regression of ; on X or a subset of X.
To conduct a more robust second-stage analysis, Athey and

300-

Number of Patients
S
S

-
o
<

anm

. 2
Patient-Level Outreach Effectiveness

Figure |. Histogram of patient-level treatment effect estimates.
Notes: Blue dotted line represents the average treatment effect.

Wager (2021) recommend an adjustment to T; to improve its
precision and robustness to assumptions. For a given 7;, the esti-
mate I is given as

. W; — ¢

=4+ ——— Y — [ty + (Wi — &)1}
&l —¢)

(6),

where {Y;, W;, &, m;} are as previously defined. The estimate
I'; is considered doubly robust because it only requires either
the propensity score (i.e., e(x)) or the expected outcome
(i.e., m(x)) to be correctly specified. The doubly robust hetero-
geneous treatment effect estimates vary based on the gender
(1 =female, 0 =male) and insurance type (Insurance Type 1
[l =Insurance Type 1, 0 otherwise],... Insurance Type 10
[1 =Insurance Type 10, 0 otherwise]) as follows:

[, = B, -+ B, Female; + B,Insurance Type2; + B;Insurance Type3;
+ B4InsuranceType4; + BsInsuranceTypeS;
+ BgInsuranceType6; 4 B,InsuranceType7;
+ BgInsuranceType8; + By InsuranceType9;
=+ B1gInsuranceTypel0; + ;.

Table 2 shows the results from the second-stage analysis, which
are largely consistent with those from the first two approaches.
Female patients are more responsive to outreach than male
patients, and outreach is less (more) effective among patients
with Insurance Type 1 than those with Insurance Types 2, 3,
4,5,6, 7, and 8 (9 and 10). The second-stage analysis based
on causal forests reveals the patterns regarding treatment
effects within subgroups in a more formal way.

Pros and cons of causal forests. A key advantage of causal forests
is the ability to uncover individual-level treatment effects
with valid confidence intervals. It also systematically detects
unexpected heterogeneity without (1) the need for a larger
number of experimental conditions, (2) restrictions on the
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Table 2. Sources of Treatment Effect Heterogeneity Based on
Doubly Robust Estimates.

Coef. SE

Female (I =yes) 073k (.005)
Insurance Type 2 .026* (0l1)
Insurance Type 3 gk (ol
Insurance Type 4 .023* (ol
Insurance Type 5 .056%F* (ol
Insurance Type 6 .1 03#F* (ol
Insurance Type 7 078 (orrn
Insurance Type 8 .037#%* ol
Insurance Type 9 —.028* (.012)
Insurance Type 10 —. |42 (.010)
Intercept 2 (.008)
*b <.05.

*p<.0l.

w5k < 001,

number of covariates or (3) limiting the nature and number of
interactions among covariates.

In terms of cons, the output of causal forests is difficult to inter-
pret with respect to the sources of heterogeneity. Causal forests is
one of many estimators of heterogeneous treatment effects. Formal
guidance for choosing the best estimator in a given context is
lacking. This poses two challenges: First, relying on a single
method might leave researchers too much freedom to make an
arbitrary modeling choice. Second, each method may not
perform very well in certain regions of the feature space.
Researchers can compare multiple estimators of treatment effect
heterogeneity and evaluate whether these estimators agree on the
assignment of each individual to gain more confidence in the con-
clusions (Kiinzel, Walter, and Sekhon 2019).

Conclusion

Causal forests is an emerging technique that accounts for treat-
ment effect heterogeneity, in addition to an ANOV A/regression
or random-coefficients model. As Table 1 shows, each approach

is slightly different, and no single approach is perfect for incor-
porating treatment effect heterogeneity. Our larger hope is that
the public policy community embraces emerging approaches
such as causal forests to provide more nuanced recommenda-
tions to policy makers in field experiments related to domains
such as nutrition, educational programs, safety training evalua-
tion, sustainability, and donation behavior, among others.
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